cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280893 a(n) is the maximum prime factor of the concatenation of all the previous terms, with a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 3, 41, 43, 1063, 5479, 111031, 790000148543, 790000148543, 326139075156576200419624217119, 326139075156576200419624217119, 326139075156576200419624217119, 246787955464079218902570922322710067417716295997334514692275780099917
Offset: 1

Views

Author

Paolo P. Lava, Jan 10 2017

Keywords

Examples

			The maximum prime factor of concat(1,2) = 12 is 3, so a(3) = 3;
The maximum prime factor of concat(1,2,3) = 123 is 41, so a(4) = 41; etc.
		

Crossrefs

Cf. A280894.

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,b,c,k,n; print(1); print(2); a:=12;for n from 3 to q do b:=ifactors(a)[2]; c:=0; for k from 1 to nops(b) do if b[k][1]>c then c:=b[k][1]; fi; od; a:=a*10^(ilog10(c)+1)+c; print(c); od; end: P(10^2);
  • Mathematica
    a = {1, 2}; Do[AppendTo[a, FactorInteger[FromDigits@ Flatten@ Map[IntegerDigits, a]][[-1, 1]]], {10}]; a (* Michael De Vlieger, Jan 10 2017 *)

Extensions

a(12)-a(13) from Jon E. Schoenfield, Jan 10 2017
a(14)-a(15) from Hans Havermann, Jan 12 2017

A359406 Integers k such that the concatenation of k consecutive primes starting at 31 is prime.

Original entry on oeis.org

1, 2, 3, 23, 43, 141
Offset: 1

Views

Author

Mikk Heidemaa, Dec 30 2022

Keywords

Comments

The corresponding primes (p) known (31, 3137, 313741, ...) have an even number of digits and p (mod 10) == 1|7. For those at a(1)...a(6), p (mod 3) == p (mod 5) holds.
a(7): 3472 corresponds to a 15968-digit probable prime (certification in progress).
For a(8), k > 15000 (if it exists).
a(8) > 30000. - Tyler Busby, Feb 13 2023

Examples

			2 is a term because the consecutive primes 31 and 37 concatenated to 3137 yield another prime.
		

Crossrefs

Programs

  • Mathematica
    UpToK[k_] := Block[{a := FromDigits @ Flatten @ IntegerDigits @ Join[{}, Prime @ Range[11, i]]}, Reap[ Do[ If[ PrimeQ[a], Sow[i - 10], Sow[Nothing]], {i, k}]]][[2, 1]]; UpToK[3500] (* or *)
    UpToK[k_] := Flatten @ Parallelize @ MapIndexed[ If[ PrimeQ[#1], #2, Nothing] &, DeleteCases[ FromDigits /@ Flatten /@ IntegerDigits @ Prime @ Range[11, Range[k]], 0]]; UpToK[3500]
Showing 1-2 of 2 results.