A280920 Seventh column of Euler's difference table in A068106.
0, 0, 0, 0, 0, 720, 4320, 30960, 256320, 2399760, 25022880, 287250480, 3597143040, 48773612880, 711607724640, 11113078385520, 184925331414720, 3265974496290960, 61006644910213920, 1201583921745846960, 24885771463659934080, 540624959563046320080, 12291921453805577987040
Offset: 1
Keywords
Examples
a(10)=2399760 since there are 2399760 permutations in S10 that avoid substrings {17,28,39,4(10)}.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..400
- Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
Programs
-
Mathematica
Table[Sum[(-1)^j*Binomial[n-6,j]*(n-j)!,{j,0,n-6}],{n,1,23}] (* Indranil Ghosh, Feb 26 2017 *)
-
PARI
a(n) = sum(j=0, n-6, (-1)^j*binomial(n-6,j)*(n-j)!); \\ Michel Marcus, Feb 26 2017
-
Python
f=math.factorial def C(n,r):return f(n)/f(r)/f(n-r) def A280920(n): s=0 for j in range(0,n-5): s+=(-1)**j*C(n-6,j)*f(n-j) return s # Indranil Ghosh, Feb 26 2017
Formula
For n>=7: a(n) = Sum_{j=0..n-6} (-1)^j*binomial(n-6,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
Comments