A384225
Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1
------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 2; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 1, 1; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 2; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 1, 1; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 3; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 2; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has only one odd number, so the row 14 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of odd numbers in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
For n = 16 the list of divisors of 16 is [1, 2, 4, 8, 16]. There is only one sublist of divisors of 16 whose terms increase by a factor of at most 2, that is the same as the list of divisors of 16, which has five terms and only one odd number, so the row 16 is [1].
Cf.
A000203,
A027750,
A174973 (2-dense numbers),
A280940,
A237271,
A379288,
A384149,
A384222,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
-
A384225row[n_] := Map[Count[#, _?OddQ] &, Split[Divisors[n], #2/# <= 2 &]];
Array[A384225row, 50] (* Paolo Xausa, Jul 08 2025 *)
A351819
Irregular triangle read by rows: T(n,k) is the number of subparts of the symmetric representation of sigma(n) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616, n >= 1, k >= 1, and the first element of column k is in row A000384(k).
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 1, 0, 1, 2, 2, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 2, 0, 1, 1, 1, 2, 0, 0, 2, 0, 0, 0
Offset: 1
Triangle begins:
-----------------------
n / k 1 2 3 4
-----------------------
1 | 1;
2 | 1;
3 | 2;
4 | 1;
5 | 2;
6 | 1, 1;
7 | 2, 0;
8 | 1, 0;
9 | 2, 1;
10 | 2, 0;
11 | 2, 0;
12 | 1, 1;
13 | 2, 0;
14 | 2, 0;
15 | 2, 1, 1;
16 | 1, 0, 0;
17 | 2, 0, 0;
18 | 1, 2, 0;
19 | 2, 0, 0;
20 | 1, 0, 1;
21 | 2, 2, 0;
22 | 2, 0, 0;
23 | 2, 0, 0;
24 | 1, 1, 0;
25 | 2, 0, 1;
26 | 2, 0, 0;
27 | 2, 2, 0;
28 | 1, 0, 0, 1;
...
For n = 15 the calculation of the 15th row of triangle (in accordance with the geometric algorithm described in A347186) is as follows:
Stage 1 (Construction):
We draw the diagram called "double-staircases" with 15 levels described in A335616.
Then we label the five double-staircases (j = 1..5) as shown below:
_
_| |_
_| _ |_
_| | | |_
_| _| |_ |_
_| | _ | |_
_| _| | | |_ |_
_| | | | | |_
_| _| _| |_ |_ |_
_| | | _ | | |_
_| _| | | | | |_ |_
_| | _| | | |_ | |_
_| _| | | | | |_ |_
_| | | _| |_ | | |_
_| _| _| | _ | |_ |_ |_
|_ _ _ _ _ _ _ _|_ _ _|_ _|_|_|_|_ _|_ _ _|_ _ _ _ _ _ _ _|
1 2 3 4 5
.
Stage 2 (Debugging):
We remove the fourth double-staircase as it does not have at least one step at level 1 of the diagram starting from the base, as shown below:
_
_| |_
_| _ |_
_| | | |_
_| _| |_ |_
_| | _ | |_
_| _| | | |_ |_
_| | | | | |_
_| _| _| |_ |_ |_
_| | | | | |_
_| _| | | |_ |_
_| | _| |_ | |_
_| _| | | |_ |_
_| | | | | |_
_| _| _| _ |_ |_ |_
|_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
1 2 3 5
.
Stage 3 (Annihilation):
We delete the second double-staircase and the steps of the first double-staircase that are just above the second double-staircase.
The new diagram has two double-staircases and two simple-staircases as shown below:
_
| |
_ | | _
_| | _| |_ | |_
_| | | | | |_
_| | | | | |_
_| | _| |_ | |_
_| | | | | |_
_| | | | | |_
_| | _| _ |_ | |_
|_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
1 3 5
.
The diagram is called "ziggurat of 15".
The staircase labeled 1 arises from the double-staircase labeled 1 in the double-staircases diagram of 15. There is a pair of these staircases, so T(15,1) = 2, since the symmetric representation of sigma(15) is also the base of the three dimensional version of the ziggurat .
The double-staircase labeled 3 is the same in both diagrams, so T(15,2) = 1.
The double-staircase labeled 5 is the same in both diagrams, so T(15,3) = 1.
Therefore the 15th row of the triangle is [2, 1, 1].
The top view of the 3D-Ziggurat of 15 and the symmetric representation of sigma(15) with subparts look like this:
_ _
|_| | |
|_| | |
|_| | |
|_| | |
|_| | |
|_| | |
|_| | |
_ _ _|_| _ _ _|_|
_ _|_| 36 _ _| | 8
|_|_|_| | _ _|
_|_|_| _| |_|
|_|_| 1 |_ _| 1
| 34 | 7
_ _ _ _ _ _ _ _| _ _ _ _ _ _ _ _|
|_|_|_|_|_|_|_|_| |_ _ _ _ _ _ _ _|
36 8
.
Top view of the 3D-Ziggurat. The symmetric representation of
The ziggurat is formed by 3 of sigma(15) is formed by 3 parts.
polycubes with 107 cubes It has 4 subparts with 24 cells in
in total. It has 4 staircases total. It is the base of the ziggurat.
with 24 steps in total.
.
Cf.
A000384,
A082647,
A196020,
A235791,
A236104,
A237048,
A237591,
A237593,
A262626,
A335616,
A346875,
A347186,
A347263,
A347529.
A280849
Square array T(j,k) read by antidiagonals upwards, in which column k lists the numbers n having k odd divisors greater than sqrt(2*n), with j >= 1, k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 21, 6, 7, 27, 75, 8, 9, 33, 135, 105, 12, 10, 39, 147, 189, 315, 16, 11, 45, 165, 225, 525, 495, 20, 13, 51, 171, 297, 675, 585, 945, 24, 14, 55, 175, 351, 693, 765, 1155, 1575, 28, 15, 57, 195, 385, 735, 855, 1365, 2475, 2835, 32, 17, 63, 207, 405, 819, 1071, 1485, 2625
Offset: 1
The upper-left corner of the square array begins:
1, 3, 21, 75, 105, 315, 495, 945, 1575, 2835, ...
2, 5, 27, 135, 189, 525, 585, 1155, 2475, ...
4, 7, 33, 147, 225, 675, 765, 1365, ...
6, 9, 39, 165, 297, 693, 855, ...
8 10, 45, 171, 351, 735, ...
12, 11, 51, 175, 385, ...
16, 13, 55, 195, ...
20, 14, 57, ...
24, 15, ...
28, ...
...
Column 0 gives
A082662. The rest of the terms are in
A281005 in increasing order.
Cf.
A000203,
A001227,
A067742,
A131576,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A244050,
A245092,
A261699,
A262626,
A279387,
A280940.
-
jMax = 11; nMax = 5000; cnt[n_] := cnt[n] = DivisorSum[n, Boole[OddQ[#] && # > Sqrt[2n]]&]; col[k_] := Select[Range[nMax], cnt[#] == k&]; T[j_, k_] := col[k][[j]]; Table[T[j-k, k], {j, 1, jMax}, {k, 0, j-1}] // Flatten (* Jean-François Alcover, Feb 16 2017 *)
A281009
Number of odd divisors of n minus the number of middle divisors of n.
Original entry on oeis.org
0, 0, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 4, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 4, 2, 2, 2, 2, 2, 4, 0, 2, 2, 2, 2, 4, 2, 2, 0, 2, 2, 4, 2, 2, 2, 4, 0, 4, 2, 2, 2, 2, 2, 4, 0, 4, 2, 2, 2, 4, 2, 2, 0, 2, 2, 6, 2, 2, 4, 2, 0, 4, 2, 2, 2, 4, 2, 4, 0, 2, 4, 2, 2, 4, 2, 4, 0, 2, 2, 4, 2, 2, 4, 2, 0, 8
Offset: 1
For n = 45 the divisors of 45 are [1, 3, 5, 9, 15, 45]. There are 6 odd divisors, and two of them [5 and 9] are also the middle divisors of 45, so a(45) = 6 - 2 = 4.
Other examples (conjectured):
2) There are two odd divisors of 45 that are greater than the square root of 2*45 = 9.4..., so a(45) = 2*2 = 4.
3) The 45th row of A237593 is [23, 8, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 5, 8, 23], and the 44th row of the same triangle is [23, 8, 4, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 8, 23], therefore between both symmetric Dyck paths (described in A237593 and A279387) there are two central subparts [27 and 1] and two pairs of equidistant subparts ([23, 23] and [2, 2]). The total number of equidistant subparts is equal to 4, so a(45) = 4. (the diagram of the symmetric representation of sigma(45) is too large to include).
4) The 45th row of A196020 is [89, 43, 27, 0, 13, 9, 0, 0, 1], hence the 45th row of A280850 is [23, 23, 27, 0, 2, 2, 0, 0, 1]. There are two central subparts [27 and 1] and two pairs of equidistant subparts ([23, 23] and [2, 2]). The total number of equidistant subparts is equal to 4, so a(45) = 4.
Cf.
A001227,
A067742,
A082647,
A131576,
A196020,
A236104,
A237048,
A237593,
A245092,
A249351,
A261699,
A262626,
A279667,
A280849,
A280850,
A280940,
A281005,
A281007,
A281008.
-
N:= 200: # to get a(1)..a(N)
A:= Vector(N):
for m from 1 to N by 2 do
R:= [seq(k*m,k=1..N/m)];
A[R]:= A[R] + Vector(nops(R),1);
od:
for m from 1 to N do
R:= [seq(k*m, k= floor(m/2)+1..min(2*m,N/m))];
A[R]:= A[R] - Vector(nops(R),1);
od:
convert(A,list); # Robert Israel, Feb 20 2017
-
Table[Count[#, d_ /; OddQ@ d] - Count[#, d_ /; Sqrt[n/2] <= d < Sqrt[2 n]] &@ Divisors@ n, {n, 120}] (* Michael De Vlieger, Feb 20 2017 *)
A281008
Least positive integer k with exactly n odd divisors greater than sqrt(2*k).
Original entry on oeis.org
1, 3, 21, 75, 105, 315, 495, 945, 1575, 2835, 3465, 4095, 11025, 17955, 10395, 23205, 17325, 24255, 31185, 36855, 51975, 61425, 45045, 108675, 143325, 121275, 184275, 155925, 135135, 176715, 239085, 315315, 294525, 225225, 606375, 626535, 405405, 700245, 1531530, 1351350, 2072070, 1289925, 855855
Offset: 0
a(3) = 75 because the divisors of 75 are [1, 3, 5, 15, 25, 75], and 75 has three odd divisors greater than the square root of 2*75 = 12.2..., and it is the smallest number with that property.
Other examples (conjectured):
2) The 75th row of A237593 is [38, 13, 7, 4, 3, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 3, 4, 7, 13, 38], and the 74th row of the same triangle is [38, 13, 6, 5, 3, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 3, 5, 6, 13, 38], therefore between both symmetric Dyck paths (described in A237593 and A279387) there are three pairs of equidistant subparts: [38, 38], [21, 21] and [3, 3]. That is the first row with that property, so a(3) = 75. (The diagram of the symmetric representation of sigma(75) is too large to include).
3) The 75th row of A196020 is [149, 73, 47, 0, 25, 19, 0, 0, 0, 5, 0], hence the 75th row of A280850 is [38, 38, 21, 0, 3, 3, 0, 0, 0, 21, 0]. There are three pairs of equidistant subparts [38, 38], [21, 21] and [3, 3]. That is the first row with that property, so a(3) = 75.
4) The 75th row of A237048 is [1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0]. The sum of the even-indexed terms is equal to 3. That is the first row with that property, so a(3) = 75.
5) The 75th row of A261699 is [1, 75, 3, 0, 5, 25, 0, 0, 0, 15, 0]. There are three even-indexed terms that are positive integers: [75, 25, 15]. That is the first row with that property, so a(3) = 75.
Cf.
A000203,
A001227,
A008585,
A067742,
A082262,
A131576,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A244050,
A245092,
A261699,
A262626,
A279387,
A280850,
A280940,
A281005.
-
cnt[k_] := cnt[k] = DivisorSum[k, Boole[OddQ[#] && #>Sqrt[2k]]&]; a[n_] := a[n] = For[k = 1, True, k++, If[cnt[k]==n, Return[k]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
-
a(n,{s=0},{q=1},{k=2},{w=1})={if(n<1,return(1));my(z,ii,F,d,L:list,V,p,ans:list);ans=List();if(q<1,q=1);if(k<2,k=2);while(k++,p=sqrt(2*k);F=factor(k);ii=vecsum(F[1,]);F=F[,1]~;L=List([1]);for(i=1,ii,forvec(y=vector(i,t,[1,#F]),d=prod(u=1,#y,F[y[u]]);if((d<=k)&&!(k%d),listput(L,d)),1));V=Set(Vec(L));if(n==sum(u=1,#V,(V[u]>p)&&(V[u]%2==!!w)),if(s,print1(V","));listput(ans,k);if(z++==q,if(#ans==1,return(k),return(Vec(ans))),n++)))} \\ with n>=1, "s" set to 1 also prints the divisors (of "w" version: 1 odd, 0 even) for the first "q" terms from the n-th, resuming their search with k>=2. - R. J. Cano, Feb 20 2017
-
a(n)=my(k,s); while(k++, s=sqrtint(2*k); if(sumdiv(k>>valuation(k,2), d, d>s)==n, return(k))) \\ Charles R Greathouse IV, Feb 20 2017
A317292
a(n) is the total number of edges after n-th stage in the diagram of the symmetries of sigma in which the parts of width > 1 are dissected into subparts of width 1, with a(0) = 0.
Original entry on oeis.org
0, 4, 8, 14, 20, 26, 36, 42, 50, 60, 70, 76, 92, 98, 108, 124, 136, 142, 160, 166, 182, 198, 208, 214, 238, 250, 260, 276, 294, 300
Offset: 0
Illustration of initial terms (n = 1..9):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 8 14 20 26 36
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _
. |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ |
. |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _
. |_ _ _| |_|_ _ |_ _ _| |_|_ _ | |_ _ _| |_|_ _ | |
. |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | |
. |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | |
. |_ | | | | | | |_ | | | | | | | |_ | | | | | | | |
. |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_|
.
. 42 50 60
.
.
Illustration of the two-dimensional diagram after 29 stages (contains 300 edges, 239 vertices and 62 regions or subparts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
|_ _ _ _ _ _ _ _ _ _ _ _ _ | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_
|_ _ _ _ _ _ _ _ _ _ | | |_ _ |_ _| |_|_
|_ _ _ _ _ _ _ _ _ _| | |_ _ | |_ |_ _ |_ _
|_ _ _ _ _ _ _ _ _ | |_ _ _| |_ |_ | |_ _ |
|_ _ _ _ _ _ _ _ _| | |_ _ |_ |_ |_|_ _ | |
|_ _ _ _ _ _ _ _ | |_ _ |_ _|_ |_ _ | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| | |_ _| |_ | |_ _ | | |_|_ _ _ _ _ | |
|_ _ _ _ _ _ _ | |_ _ |_ |_|_ | | |_|_ _ _ _ _ | | | |
|_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | |
|_ _ _ _ _ _ | |_ |_ |_ | | |_|_ _ _ _ | | | | | | | |
|_ _ _ _ _ _| |_ _| |_|_ | |_|_ _ _ _ | | | | | | | | | |
|_ _ _ _ _ | |_ |_ _ | |_ _ _ _ | | | | | | | | | | | |
|_ _ _ _ _| |_ |_ | |_|_ _ _ | | | | | | | | | | | | | |
|_ _ _ _ |_ _|_ |_|_ _ _ | | | | | | | | | | | | | | | |
|_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | |
|_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | |
|_ _ _| |_|_ _ | | | | | | | | | | | | | | | | | | | | | |
|_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | |
|_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
For the definition of "subparts" see
A279387.
For the triangle of sums of subparts see
A279388.
Cf.
A060831 (number of regions or subparts).
Compare with
A317109 (analog for the diagram that contains only parts).
First differs from
A317109 at a(6).
Cf.
A000203,
A001227,
A196020,
A235791,
A237048,
A237590,
A237591,
A237270,
A237271,
A237593,
A245092,
A244050,
A262626,
A280850,
A280851,
A280940,
A285901,
A294723,
A296508.
A317293
a(n) is the total number of vertices after n-th stage in the diagram of the symmetries of sigma in which the parts of width > 1 are dissected into subparts of width 1, with a(0) = 1.
Original entry on oeis.org
1, 4, 7, 11, 16, 20, 28, 32, 39, 46, 54, 58, 72, 76, 84, 96, 107, 111, 126, 130, 144, 156, 164, 168, 190, 199, 207, 219, 235, 239
Offset: 0
Illustration of initial terms (n = 0..9):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 1 4 7 11 16 20 28
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _
. |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ |
. |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _
. |_ _ _| |_|_ _ |_ _ _| |_|_ _ | |_ _ _| |_|_ _ | |
. |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | |
. |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | |
. |_ | | | | | | |_ | | | | | | | |_ | | | | | | | |
. |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_|
.
. 32 39 46
.
.
Illustration of the two-dimensional diagram after 29 stages (contains 239 vertices, 300 edges and 62 regions or subparts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ _ _ | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_
|_ _ _ _ _ _ _ _ _ _ | | |_ _ |_ _| |_|_
|_ _ _ _ _ _ _ _ _ _| | |_ _ | |_ |_ _ |_ _
|_ _ _ _ _ _ _ _ _ | |_ _ _| |_ |_ | |_ _ |
|_ _ _ _ _ _ _ _ _| | |_ _ |_ |_ |_|_ _ | |
|_ _ _ _ _ _ _ _ | |_ _ |_ _|_ |_ _ | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| | |_ _| |_ | |_ _ | | |_|_ _ _ _ _ | |
|_ _ _ _ _ _ _ | |_ _ |_ |_|_ | | |_|_ _ _ _ _ | | | |
|_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | |
|_ _ _ _ _ _ | |_ |_ |_ | | |_|_ _ _ _ | | | | | | | |
|_ _ _ _ _ _| |_ _| |_|_ | |_|_ _ _ _ | | | | | | | | | |
|_ _ _ _ _ | |_ |_ _ | |_ _ _ _ | | | | | | | | | | | |
|_ _ _ _ _| |_ |_ | |_|_ _ _ | | | | | | | | | | | | | |
|_ _ _ _ |_ _|_ |_|_ _ _ | | | | | | | | | | | | | | | |
|_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | |
|_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | |
|_ _ _| |_|_ _ | | | | | | | | | | | | | | | | | | | | | |
|_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | |
|_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
For the definition of "subparts" see
A279387.
For the triangle of sums of subparts see
A279388.
Cf.
A060831 (number of regions or subparts).
Compare with
A294723 (analog for the diagram that contains only parts).
First differs from
A294723 at a(6).
Cf.
A000203,
A196020,
A235791,
A237048,
A237590,
A237591,
A237270,
A237271,
A237593,
A245092,
A244050,
A262626,
A280850,
A280851,
A280940,
A285901,
A296508,
A317109.
A384230
Number of subparts in the central part of the symmetric representation of sigma(n).
Original entry on oeis.org
1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 3, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 4, 0, 1, 0, 0, 2, 3, 0, 0, 0, 2, 0, 4, 0, 0, 4, 0, 0, 2, 1, 1, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 4, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0
Offset: 1
See the "Discussion" text file in the first link for the examples.
- Omar E. Pol, Discussion of the Sequence A384230.
- Omar E. Pol, Illustration of initial terms of A000203 in the pyramid.
- Omar E. Pol, Illustration of initial terms of A001065 in the pyramid.
- Omar E. Pol, Illustration of initial terms of A048050 in the pyramid.
- Omar E. Pol, Illustration of initial terms of A067742 in the pyramid.
- Omar E. Pol, Illustration of initial terms of A224613 (black spiders).
- Omar E. Pol, Illustration of initial terms of A237593 (essentially a template for the Pop-Up pyramid).
- Omar E. Pol, Prism of partitions of 10 and its companion tower (both have the same volume).
- Omar E. Pol, The symmetric representation of sigma(n), n = 1..64 (the top view of the pyramid and of the tower).
Cf.
A001227 (number of subparts),
A071561 (positions of zeros),
A071562 (positions of nonzeros),
A237270 (parts),
A237271,
A237593,
A279387 (subparts),
A280940,
A384225,
A335574,
A338488,
A377654.
See the "Discussion" text file in the first link for more cross-references.
Showing 1-8 of 8 results.
Comments