cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280987 {Concatenation n, n-1, n-2, ...3,2,1} mod sigma(n).

Original entry on oeis.org

0, 0, 1, 2, 3, 9, 1, 6, 4, 1, 9, 21, 1, 9, 9, 16, 9, 24, 1, 33, 17, 1, 9, 21, 0, 9, 1, 41, 21, 33, 17, 6, 33, 19, 33, 25, 25, 21, 1, 1, 33, 81, 17, 21, 45, 1, 33, 85, 49, 69, 57, 77, 27, 81, 1, 81, 1, 1, 21, 57, 59, 81, 33, 60, 21, 33, 45, 51, 81, 1, 9, 66, 41, 9, 97, 1, 81, 81, 1, 57, 117, 73, 33, 145
Offset: 1

Views

Author

Indranil Ghosh, Jan 12 2017

Keywords

Examples

			For n = 11, A000422(n) mod sigma(n) = 1110987654321 mod 12 = 9. S0 a(11) = 9.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]],DivisorSigma[ 1,n]],{n,90}] (* Harvey P. Dale, Jul 01 2020 *)
  • Python
    def sigma(n):
        s=0
        for i in range(1,n+1):
            if n%i==0:
                s+=i
        return s
    def C(n):
        s=""
        for i in range(n,0,-1):
            s+=str(i)
        return int(s)
    for i in range(1,101):
        print(i, C(i)%sigma(i))
    
  • Python
    from sympy import divisor_sigma
    def A280987(n): return int(''.join(map(str, range(n, 0, -1)))) % divisor_sigma(n) # David Radcliffe, Aug 08 2025

Formula

a(n) = A000422(n) mod A000203(n).