A280987 {Concatenation n, n-1, n-2, ...3,2,1} mod sigma(n).
0, 0, 1, 2, 3, 9, 1, 6, 4, 1, 9, 21, 1, 9, 9, 16, 9, 24, 1, 33, 17, 1, 9, 21, 0, 9, 1, 41, 21, 33, 17, 6, 33, 19, 33, 25, 25, 21, 1, 1, 33, 81, 17, 21, 45, 1, 33, 85, 49, 69, 57, 77, 27, 81, 1, 81, 1, 1, 21, 57, 59, 81, 33, 60, 21, 33, 45, 51, 81, 1, 9, 66, 41, 9, 97, 1, 81, 81, 1, 57, 117, 73, 33, 145
Offset: 1
Examples
For n = 11, A000422(n) mod sigma(n) = 1110987654321 mod 12 = 9. S0 a(11) = 9.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Mod[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]],DivisorSigma[ 1,n]],{n,90}] (* Harvey P. Dale, Jul 01 2020 *)
-
Python
def sigma(n): s=0 for i in range(1,n+1): if n%i==0: s+=i return s def C(n): s="" for i in range(n,0,-1): s+=str(i) return int(s) for i in range(1,101): print(i, C(i)%sigma(i))
-
Python
from sympy import divisor_sigma def A280987(n): return int(''.join(map(str, range(n, 0, -1)))) % divisor_sigma(n) # David Radcliffe, Aug 08 2025