A334337 Least positive integer m such that phi(m*n) is a cube, where phi is Euler's totient function (A000010).
1, 1, 5, 4, 3, 4, 37, 2, 37, 2, 101, 2, 19, 37, 1, 1, 5, 36, 13, 1, 19, 101, 13333, 1, 55, 19, 13, 19, 985, 1, 1057, 4, 401, 4, 73, 18, 7, 13, 9, 4, 275, 18, 2649, 401, 9, 13333, 169285, 4, 1813, 50, 4, 73, 3385, 12, 25, 73, 7, 788, 40371, 4, 3737, 1057, 12, 2, 37, 401, 4357, 2, 6537, 73, 5401, 9, 35, 7, 25, 7, 3737, 9, 48673, 2
Offset: 1
Keywords
Examples
a(3) = 5 with phi(3*5) = 2^3. a(7) = 37 with phi(7*37) = 6^3. a(863) = 21176773 with phi(863*21176773) = 17293606056 = 2586^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- P. Pollack and C. Pomerance, Square values of Euler's function, Bull. London Math. Soc. 46 (2014), 403-414. Alternative link.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. See also arXiv, arXiv:1211.1588 [math.NT], 2012-2017. (Cf. Conjecture 4.5.)
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]; phi[n_]:=phi[n]=EulerPhi[n]; tab={};Do[m=0;Label[aa];m=m+1;If[CQ[phi[m*n]],tab=Append[tab,m],Goto[aa]],{n,1,80}];tab
-
PARI
a(n) = my(m=1); while (!ispower(eulerphi(n*m), 3), m++); m; \\ Michel Marcus, Apr 23 2020
Comments