A334339 Least positive integer m such that sigma(m * n) is a cube, where sigma(k) is the sum of the divisors of k.
1, 51, 34, 291, 22, 17, 1, 1347, 597, 11, 10, 97, 892, 51, 46, 1758, 6, 3540, 343, 1649, 34, 5, 30, 449, 2928, 446, 199, 291, 472, 23, 34, 879, 235, 3, 22, 1770, 8661, 356, 3007, 1593, 884, 17, 241, 298, 1416, 15, 22, 586, 133, 1464, 2, 223, 3, 1180, 2, 1347, 711, 236, 232, 1062, 1200, 17, 597, 96771, 586, 265, 577, 485, 10, 11
Offset: 1
Keywords
Examples
a(2) = 51 with sigma(2*51) = 216 = 6^3. a(4) = 291 with sigma(4*291) = 2744 = 14^3. a(578) = 34312749 with sigma(578*34312749) = 42144192000 = 3480^3. a(673) = 49061802 with sigma(673*49061802) = 66135317184 = 4044^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. See also arXiv, arXiv:1211.1588 [math.NT], 2012-2017. (Cf. Conjecture 4.5.)
Programs
-
Mathematica
cubeQ[n_] := cubeQ[n] = IntegerQ[n^(1/3)]; sigma[n_] := sigma[n] = DivisorSigma[1, n]; tab = {}; Do[m = 0; Label[aa]; m = m + 1; If[cubeQ[sigma[m * n]], tab = Append[tab, m], Goto[aa]], {n, 70}]; tab lpi[n_]:=Module[{k=1},While[!IntegerQ[Surd[DivisorSigma[1,n*k],3]],k++]; k]; Array[lpi,70] (* Harvey P. Dale, Nov 05 2020 *)
-
PARI
a(n) = my(m=1); while (!ispower(sigma(n*m), 3), m++); m; \\ Michel Marcus, Apr 23 2020
Extensions
Corrected and extended by Harvey P. Dale, Nov 05 2020
Comments