cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280990 Least prime p such that n divides phi(p*n).

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 31, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 31, 31, 2, 67, 17, 71, 3, 37, 19, 13, 5, 41, 7, 43, 11, 31, 23, 47, 3, 7, 5, 103, 13, 53, 3, 11, 7, 19, 29, 59, 31, 61, 31, 7, 2, 131, 67, 67, 17, 139, 71, 71, 3, 73, 37, 31, 19, 463
Offset: 1

Views

Author

Altug Alkan, Jan 12 2017

Keywords

Comments

n*a(n) are 2, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 465, 32, 289, ...
a(n) <= A034694(A007947(n)). If n is in A050384 then a(n) = A034694(n). - Robert Israel, Jan 12 2017

Examples

			a(15) = 31 because 15 does not divide phi(p*15) for p < 31 where p is prime and phi(31*15) = 2*4*30 is divisible by 15.
		

Crossrefs

Cf. A000079, A065119, A086761: for those n such that a(n)=2,3,5. - Michel Marcus, Jan 20 2017

Programs

  • Maple
    f:= proc(n) local p;
        p:= 2;
        while numtheory:-phi(p*n) mod n <> 0 do p:= nextprime(p) od:
        p
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 12 2017
  • Mathematica
    lpp[n_]:=Module[{p=2},While[Mod[EulerPhi[p*n],n]!=0,p=NextPrime[p]];p]; Array[lpp,80] (* Harvey P. Dale, Sep 26 2020 *)
  • PARI
    a(n)=my(k = 1); while (eulerphi(prime(k)*n) % n != 0, k++); prime(k);
    
  • PARI
    a(n)=my(t=n/gcd(eulerphi(n),n)); if(t==1, return(2)); forstep(p=if(t%2,2*t,t)+1, if(isprime(t), t, oo),lcm(t,2), if(isprime(p), return(p))); t \\ Charles R Greathouse IV, Jan 20 2017

Formula

a(p^k) = p for all primes p and k >= 1. - Robert Israel, Jan 12 2017
a(n) << n^5 by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Jan 20 2017