cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280992 Squarefree triangular numbers that are products of consecutive primes.

Original entry on oeis.org

1, 3, 6, 15, 105, 210, 255255
Offset: 1

Views

Author

Rick L. Shepherd, Jan 13 2017

Keywords

Comments

No more terms up to the 5000000th triangular number.
If a(8) exists, it's divisible by a prime p > prime(2000) = 17389. - David A. Corneth, Oct 21 2017

Examples

			The triangular number 255255 = 714*715/2 is a term because 255255 = 3*5*7*11*13*17 is a product of distinct consecutive primes.
1 (the empty product) is a term, so is 3 (the product of just one triangular number).
		

Crossrefs

Programs

  • Maple
    # reuses code of A097889 and A061304
    isA280992 := proc(n)
        isA097889(n) and isA061304(n) ;
    end proc:
    for t from 0 do
        n := t*(t+1)/2 ;
        if isA280992(t) then
            print(t) ;
        end if;
    end do: # R. J. Mathar, Oct 20 2017
  • Mathematica
    Select[PolygonalNumber@ Range[10^5], And[NoneTrue[#[[All, -1]], # > 1 &], Union@ Differences[PrimePi[#[[All, 1]] ] ] == {1}] &@ FactorInteger@ # &] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    is(n) = my(f=factor(n)[, 1]); for(k=1, #f-1, if(f[k+1]!=nextprime(f[k]+1), return(0))); ispolygonal(n, 3) && issquarefree(n)
    search(start) = if(start < 4, if(start < 2, print1(1, ", ")); print1(3, ", ")); forcomposite(c=start, , if(is(c), print1(c, ", ")))
    /* Start a search from 1 upwards as follows: */
    search(1) \\ Felix Fröhlich, Oct 21 2017 [Corrected Jun 10, 2019]
    
  • PARI
    uptoprime(n) = {my(prim = vector(n), i = 2, res = List([1]));  prim[1] = 2; forprime(p = 3, , prim[i] = prim[i - 1] * p; i++; if(i>n, break));
    for(i=1, n, if(issquare(8 * prim[i] + 1), listput(res, prim[i])); for(j=1, i-1, c = prim[i]/prim[j]; if(issquare(8 * c + 1), listput(res, c)))); listsort(res); res} \\ David A. Corneth, Oct 21 2017

Extensions

1 and 3 prepended by David A. Corneth, Oct 21 2017