A281083 Expansion of Product_{k>=0} (1 + x^(5*k*(k+1)/2+1)).
1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1
Offset: 0
Keywords
Examples
a(82) = 2 because we have [76, 6] and [51, 31].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000 (first 1001 terms from G. C. Greubel)
- Eric Weisstein's World of Mathematics, Centered Pentagonal Number
- Index entries for sequences related to centered polygonal numbers
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 105; CoefficientList[Series[Product[1 + x^(5 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=0} (1 + x^(5*k*(k+1)/2+1)).
Comments