cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A281081 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 1, 0, 0, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered triangular numbers (A005448).

Examples

			a(46) = 2 because we have [46] and [31, 10, 4, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

A281082 Expansion of Product_{k>=0} (1 + x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered square numbers (A001844).

Examples

			a(66) = 2 because we have [61, 5] and [41, 25].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(2 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(2*k*(k+1)+1)).

A281084 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered hexagonal numbers (A003215).

Examples

			a(98) = 2 because we have [91, 7] and [61, 37].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)+1)).

A290942 Number of partitions of n into distinct generalized pentagonal numbers (A001318).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 4, 3, 3, 3, 2, 5, 4, 5, 4, 2, 3, 3, 6, 6, 5, 5, 4, 5, 7, 8, 8, 7, 6, 6, 6, 8, 9, 9, 9, 7, 8, 9, 9, 11, 10, 11, 11, 10, 12, 10, 14, 15, 14, 14, 11, 13, 13, 17, 17, 14, 15, 14, 17, 20, 19, 20, 20, 20, 21, 20, 21, 21, 25, 26, 23, 22, 21, 24, 27
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 14 2017

Keywords

Examples

			a(15) = 3 because we have [15], [12, 2, 1] and [7, 5, 2, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Product[(1 + x^(k (3 k - 1)/2)) (1 + x^(k (3 k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(3*k-1)/2))*(1 + x^(k*(3*k+1)/2)).

A322801 Number of compositions (ordered partitions) of n into centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 28, 36, 46, 59, 76, 98, 128, 167, 217, 281, 363, 468, 605, 784, 1017, 1320, 1712, 2217, 2869, 3713, 4807, 6227, 8070, 10458, 13549, 17549, 22726, 29430, 38117, 49375, 63962, 82859, 107333, 139026, 180071
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(((t+1)*5*t+2)/2>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-((i+1)*5*i+2)/2), i=0..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(5 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(5*k*(k+1)/2+1)).
Showing 1-5 of 5 results.