cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281151 a(n) = floor(4*n*(n+1)/5).

Original entry on oeis.org

0, 1, 4, 9, 16, 24, 33, 44, 57, 72, 88, 105, 124, 145, 168, 192, 217, 244, 273, 304, 336, 369, 404, 441, 480, 520, 561, 604, 649, 696, 744, 793, 844, 897, 952, 1008, 1065, 1124, 1185, 1248, 1312, 1377, 1444, 1513, 1584, 1656, 1729, 1804, 1881, 1960, 2040, 2121, 2204, 2289
Offset: 0

Views

Author

Bruno Berselli, Jan 16 2017

Keywords

Crossrefs

Subsequence of A047462.
Partial sums of A047486.
Cf. A184005: n^2 - floor((n-2)^2/4).
Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), A281026 (k=3), this sequence (k=4), A194275 (k=5).

Programs

  • Magma
    [4*n*(n+1) div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n (n + 1)/5], {n, 0, 60}]
  • Maxima
    makelist(floor(4*n*(n+1)/5), n, 0, 60);
    
  • PARI
    vector(60, n, n--; floor(4*n*(n+1)/5))
    
  • Python
    [int(4*n*(n+1)/5) for n in range(60)]
    
  • Sage
    [floor(4*n*(n+1)/5) for n in range(60)]
    

Formula

O.g.f.: x*(1 + x^2)*(1 + x)^2/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n-1) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) = a(n-5) + 8*(n-2).
a(5*k+r) = 20*k^2 + 4*(2*r+1)*k + r^2, where 0 <= r <= 4. Example: for r=3, a(5*k+3) = (2*k+1)*(10*k+9), which gives: 9, 57, 145, 273, 441, 649 etc. Also, a(n) belongs to A047462, in fact: for r = 0 or 4, a(n) == 0 (mod 8); for r = 1 or 3, a(n) == 1 (mod 8); for r = 2, a(n) == 4 (mod 8).
a(n) = a(-n) + A047462(n).
a(n) = n^2 - floor((n-2)^2/5).