cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281156 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k+1)/6).

Original entry on oeis.org

1, 1, 5, 19, 54, 165, 467, 1317, 3599, 9687, 25519, 66203, 169254, 426750, 1062950, 2616818, 6373911, 15369774, 36716706, 86939235, 204152395, 475631501, 1099874363, 2525418842, 5759549109, 13050991205, 29391523405, 65801951770, 146486952644, 324340095729, 714389015139
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Weigh transform of square pyramidal numbers (A000330).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k+1)/6).
a(n) ~ exp(5*(15*Zeta(5))^(1/5) * n^(4/5) / 2^(11/5) + 7*Pi^4 * n^(3/5) / (360*2^(2/5) * (15*Zeta(5))^(3/5)) + (Zeta(3) / (2^(13/5) * (15*Zeta(5))^(2/5)) - 49*Pi^8 / (2160000 * 2^(3/5) * 15^(2/5) * Zeta(5)^(7/5)))*n^(2/5) + (343*Pi^12 / (9720000000 * 2^(4/5) * 15^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (18000 * 2^(4/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + 49*Pi^8 * Zeta(3) / (129600000 * Zeta(5)^2) - 2401 * Pi^16 / (83980800000000 * Zeta(5)^3) - Zeta(3)^2 / (1200*Zeta(5))) * (3*Zeta(5))^(1/10) / (2^(11/18) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 09 2017