A294842
Expansion of Product_{k>=1} (1 + x^k)^(k^2*(k+1)/2).
Original entry on oeis.org
1, 1, 6, 24, 73, 238, 722, 2175, 6343, 18177, 50982, 140671, 382227, 1023623, 2706184, 7067324, 18250671, 46635309, 117997008, 295794098, 735030985, 1811435607, 4429226677, 10749552338, 25903858181, 62000039513, 147435739522, 348431110651, 818549931526, 1912010876019, 4441687009798
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
-
nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^3 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]
A294843
Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).
Original entry on oeis.org
1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number
-
nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]
A294844
Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(5*k-2)/6).
Original entry on oeis.org
1, 1, 8, 34, 114, 411, 1380, 4573, 14650, 45995, 141296, 426364, 1265443, 3698011, 10657134, 30312395, 85183177, 236681860, 650686538, 1771098691, 4775571943, 12762628737, 33821018537, 88909273699, 231945942992, 600700301298, 1544897610261, 3946762859175, 10018454809275, 25274880698255
Offset: 0
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Heptagonal Pyramidal Number
-
nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (5 d - 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]
A294845
Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k-1)/2).
Original entry on oeis.org
1, 1, 9, 39, 136, 511, 1785, 6139, 20404, 66406, 211418, 660752, 2030172, 6139231, 18300573, 53823451, 156344596, 448886205, 1274840165, 3583595734, 9976530997, 27520998775, 75262394273, 204130567402, 549318633095, 1467178746342, 3890697051314, 10246833932820, 26809705578787, 69702402930045
Offset: 0
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (2 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]
A305655
a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^n)).
Original entry on oeis.org
1, 1, 3, 13, 54, 290, 1674, 10857, 76398, 580230, 4706734, 40598349, 370694845, 3569027696, 36100349833, 382360758863, 4228730647420, 48716663849192, 583403253712747, 7248883337962522, 93291181556742684, 1241632098163126324, 17064777292709034968, 241874821482784132204
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
Table[SeriesCoefficient[Product[(1 + x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
A318125
a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).
Original entry on oeis.org
1, 1, 3, 14, 54, 238, 1026, 4573, 20404, 91902, 415953, 1891908, 8638846, 39569655, 181766878, 836950153, 3861927937, 17853107055, 82668539290, 383360628369, 1780126898575, 8275908734103, 38517137597486, 179442212204245, 836741558761935, 3905012142470483
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
A319757
Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)*(2*k+1)/6).
Original entry on oeis.org
1, -1, -5, -9, -6, 35, 125, 275, 291, -241, -2111, -5989, -10990, -11660, 6454, 68298, 201859, 400794, 546122, 269907, -1175825, -4890783, -11746437, -20668698, -25146121, -7959643, 63707489, 236244458, 546634684, 956731805, 1220119643, 676723572, -1964409479, -8645307595
Offset: 0
-
a:=series(mul((1-x^k)^(k*(k+1)*(2*k+1)/6),k=1..100),x=0,34): seq(coeff(a,x,n),n=0..33); # Paolo P. Lava, Apr 02 2019
-
nmax = 33; CoefficientList[Series[Product[(1 - x^k)^(k (2 k + 1) (k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 33; CoefficientList[Series[Exp[-Sum[x^k (1 + x^k)/(k (1 - x^k)^4), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d^2 (d + 1) (2 d + 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]
Showing 1-7 of 7 results.
Comments