cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294842 Expansion of Product_{k>=1} (1 + x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 6, 24, 73, 238, 722, 2175, 6343, 18177, 50982, 140671, 382227, 1023623, 2706184, 7067324, 18250671, 46635309, 117997008, 295794098, 735030985, 1811435607, 4429226677, 10749552338, 25903858181, 62000039513, 147435739522, 348431110651, 818549931526, 1912010876019, 4441687009798
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^3 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002411(k).
a(n) ~ exp(-2401 * Pi^16 / (2^12 * 3^11 * 5^8 * Zeta(5)^3) + (343 * Pi^12 / (2^(38/5) * 3^(37/5) * 5^(36/5) * Zeta(5)^(11/5))) * n^(1/5) - (49*Pi^8 / (2^(31/5) * 3^(24/5) * 5^(22/5) * Zeta(5)^(7/5))) * n^(2/5) + (7*Pi^4 / (2^(14/5) * 3^(16/5) * 5^(8/5) * Zeta(5)^(3/5))) * n^(3/5) + (5 * 3^(2/5) * (5*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(167/240) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A294843 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002412(k).
a(n) ~ exp(-2401 * Pi^16 / (671846400000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (518400000 * Zeta(5)^2) - Zeta(3)^2 / (2400*Zeta(5)) + (343 * Pi^12 / (77760000000 * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4*Zeta(3) / (72000 * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (8640000 * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (8 * (15*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (720 * (15*Zeta(5))^(3/5))) * n^(3/5) + (5*(15*Zeta(5))^(1/5)/4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (2^(173/360) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A294844 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(5*k-2)/6).

Original entry on oeis.org

1, 1, 8, 34, 114, 411, 1380, 4573, 14650, 45995, 141296, 426364, 1265443, 3698011, 10657134, 30312395, 85183177, 236681860, 650686538, 1771098691, 4775571943, 12762628737, 33821018537, 88909273699, 231945942992, 600700301298, 1544897610261, 3946762859175, 10018454809275, 25274880698255
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal pyramidal numbers (A002413).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (5 d - 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002413(k).
a(n) ~ (3*Zeta(5))^(1/10) / (2^(479/720) * 5^(3/10) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1312200000000000 * Zeta(5)^3) - 49 * Pi^8 * Zeta(3) / (405000000 * Zeta(5)^2) - Zeta(3)^2 / (750*Zeta(5)) + (343*Pi^12 / (60750000000 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (22500 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (5400000 * 2^(1/5) * 3^(2/5) * 5^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * 5^(4/5) * (3*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (900 * 2^(4/5) * 5^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5^(7/5) * (3*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)). - Vaclav Kotesovec, Nov 10 2017

A318125 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).

Original entry on oeis.org

1, 1, 3, 14, 54, 238, 1026, 4573, 20404, 91902, 415953, 1891908, 8638846, 39569655, 181766878, 836950153, 3861927937, 17853107055, 82668539290, 383360628369, 1780126898575, 8275908734103, 38517137597486, 179442212204245, 836741558761935, 3905012142470483
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the weigh transform of n-gonal pyramidal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.761510955746025663058811... and c = 0.2241869836397882024713... - Vaclav Kotesovec, Aug 19 2018
Showing 1-4 of 4 results.