cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A294843 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002412(k).
a(n) ~ exp(-2401 * Pi^16 / (671846400000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (518400000 * Zeta(5)^2) - Zeta(3)^2 / (2400*Zeta(5)) + (343 * Pi^12 / (77760000000 * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4*Zeta(3) / (72000 * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (8640000 * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (8 * (15*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (720 * (15*Zeta(5))^(3/5))) * n^(3/5) + (5*(15*Zeta(5))^(1/5)/4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (2^(173/360) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A294844 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(5*k-2)/6).

Original entry on oeis.org

1, 1, 8, 34, 114, 411, 1380, 4573, 14650, 45995, 141296, 426364, 1265443, 3698011, 10657134, 30312395, 85183177, 236681860, 650686538, 1771098691, 4775571943, 12762628737, 33821018537, 88909273699, 231945942992, 600700301298, 1544897610261, 3946762859175, 10018454809275, 25274880698255
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal pyramidal numbers (A002413).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (5 d - 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002413(k).
a(n) ~ (3*Zeta(5))^(1/10) / (2^(479/720) * 5^(3/10) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1312200000000000 * Zeta(5)^3) - 49 * Pi^8 * Zeta(3) / (405000000 * Zeta(5)^2) - Zeta(3)^2 / (750*Zeta(5)) + (343*Pi^12 / (60750000000 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (22500 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (5400000 * 2^(1/5) * 3^(2/5) * 5^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * 5^(4/5) * (3*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (900 * 2^(4/5) * 5^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5^(7/5) * (3*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)). - Vaclav Kotesovec, Nov 10 2017

A294845 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k-1)/2).

Original entry on oeis.org

1, 1, 9, 39, 136, 511, 1785, 6139, 20404, 66406, 211418, 660752, 2030172, 6139231, 18300573, 53823451, 156344596, 448886205, 1274840165, 3583595734, 9976530997, 27520998775, 75262394273, 204130567402, 549318633095, 1467178746342, 3890697051314, 10246833932820, 26809705578787, 69702402930045
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the octagonal pyramidal numbers (A002414).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (2 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002414(k).
a(n) ~ exp(-2401 * Pi^16 / (2267481600000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (388800000 * Zeta(5)^2) - Zeta(3)^2 / (400*Zeta(5)) + (343*Pi^12 / (87480000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (18000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (6480000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5)*Zeta(3) / (2^(13/5) * (5*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (1080 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5))) * n^(3/5) + (3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) / 2^(11/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(11/20) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A327063 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^j).

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 8, 11, 15, 24, 34, 43, 63, 87, 115, 159, 217, 279, 380, 505, 657, 868, 1139, 1458, 1913, 2482, 3162, 4069, 5232, 6628, 8469, 10755, 13544, 17127, 21634, 27061, 33988, 42557, 52985, 66069, 82289, 101862, 126281, 156275, 192655, 237530, 292502
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[(1+x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327064 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^k).

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 35, 62, 110, 197, 339, 573, 975, 1621, 2674, 4385, 7108, 11422, 18277, 28976, 45648, 71531, 111372, 172416, 265695, 407210, 621143, 943392, 1426414, 2147672, 3221271, 4812534, 7163440, 10625651, 15706871, 23141148, 33987287, 49762235
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327065 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 2, 5, 12, 20, 42, 75, 141, 259, 466, 799, 1427, 2443, 4169, 7049, 11863, 19605, 32518, 53184, 86579, 140018, 225380, 359739, 572864, 905903, 1426270, 2234952, 3488313, 5416403, 8383226, 12917257, 19831763, 30334937, 46245977, 70242043, 106371686
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A318125 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).

Original entry on oeis.org

1, 1, 3, 14, 54, 238, 1026, 4573, 20404, 91902, 415953, 1891908, 8638846, 39569655, 181766878, 836950153, 3861927937, 17853107055, 82668539290, 383360628369, 1780126898575, 8275908734103, 38517137597486, 179442212204245, 836741558761935, 3905012142470483
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the weigh transform of n-gonal pyramidal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.761510955746025663058811... and c = 0.2241869836397882024713... - Vaclav Kotesovec, Aug 19 2018
Showing 1-7 of 7 results.