cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A282153 Expansion of x*(1 - 2*x + 3*x^2)/((1 - x)*(1 - 2*x)*(1 - x + x^2)).

Original entry on oeis.org

0, 1, 2, 5, 13, 30, 63, 127, 254, 509, 1021, 2046, 4095, 8191, 16382, 32765, 65533, 131070, 262143, 524287, 1048574, 2097149, 4194301, 8388606, 16777215, 33554431, 67108862, 134217725, 268435453, 536870910, 1073741823, 2147483647, 4294967294, 8589934589
Offset: 0

Views

Author

Paul Curtz, Feb 07 2017

Keywords

Comments

After 0, partial sums of A281166.
Table of the first differences:
0, 1, 2, 5, 13, 30, 63, 127, 254, 509, 1021, 2046, ...
1, 1, 3, 8, 17, 33, 64, 127, 255, 512, 1025, 2049, ... A281166
0, 2, 5, 9, 16, 31, 63, 128, 257, 513, 1024, 2047, ...
2, 3, 4, 7, 15, 32, 65, 129, 256, 511, 1023, 2048, ...
repeat A281166.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 5, -2}, {0, 1, 2, 5}, 34] (* Robert P. P. McKone, Feb 07 2021 *)
  • PARI
    concat(0, Vec(x*(1 - 2*x + 3*x^2) / ((1 - x)*(1 - 2*x)*(1 - x + x^2)) + O(x^50))) \\ Colin Barker, Feb 10 2017

Formula

From Colin Barker, Feb 10 2017: (Start)
G.f.: x*(1 - 2*x + 3*x^2)/((1 - x)*(1 - 2*x)*(1 - x + x^2)).
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) for n>3. (End)
From Bruno Berselli, Feb 10 2017: (Start)
a(n) = 2^n + ((-1)^floor(n/3) + (-1)^floor((n+1)/3))/2 - 2. Therefore:
a(3*k) = 8^k + (-1)^k - 2,
a(3*k+1) = 2*8^k + (-1)^k - 2,
a(3*k+2) = 4*8^k - 2. (End)
a(n+6*h) = a(n) + 2^n*(64^h - 1) with h>=0. For h=1, a(n+6) = a(n) + 63*2^n.
a(n) - (a(n) mod 9) = A153237(n) = 9*A153234(n).

Extensions

More terms from Colin Barker, Feb 10 2017
Showing 1-1 of 1 results.