cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A281182 E.g.f. C(x) + S(x) = exp( Integral C(x)^3 dx ) where C(x) and S(x) are described by A281181 and A281180, respectively.

Original entry on oeis.org

1, 1, 1, 4, 13, 88, 493, 4672, 37369, 454144, 4732249, 70084096, 901188997, 15728822272, 240798388357, 4836914249728, 85948640603761, 1952137912385536, 39504564917358001, 1000749157519458304, 22726779729476308093, 635146072839001735168, 15998009117983994065693, 488855521088102855606272, 13526765851190230940840809, 448599416591747486039670784, 13528070218935445806530640649
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 88*x^5/5! + 493*x^6/6! + 4672*x^7/7! + 37369*x^8/8! + 454144*x^9/9! + 4732249*x^10/10! + 70084096*x^11/11! + 901188997*x^12/12! +...
where A(x) = C(x) + S(x) and the series for C(x) and S(x) begin:
C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! +...+ A281181(n)*x^(2*n)/(2*n)! +...
S(x) = S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +...
such that C(s) + S(x) = exp( Integral C(x)^3 dx ).
The logarithm of the e.g.f. begins:
log(C(x) + S(x)) = x + 3*x^3/3! + 57*x^5/5! + 2739*x^7/7! + 246801*x^9/9! + 35822307*x^11/11! + 7636142793*x^13/13! + 2246286827091*x^15/15! +...
which equals Integral C(x)^3 dx.
Also, log(C(x) + S(x)) = Series_Reversion( Integral 1/cosh(x)^3 dx ).
		

Crossrefs

Cf. A281180 (S), A281181 (C), A281183 (C^2), A281184 (C^3).

Programs

  • Mathematica
    CoefficientList[Exp[InverseSeries[Series[(Sinh[x]/Cosh[x]^2 + ArcTan[Sinh[x]])/2, {x, 0, 30}], x]], x] * Range[0, 30]! (* Vaclav Kotesovec, Sep 02 2017 *)
  • PARI
    {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^4 +x*O(x^n)); C = 1 + intformal( S*C^3 ) ); n!*polcoeff(C + S, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ) */
    {a(n) = my(S=x); S = serreverse( intformal( 1/(1 + x^2 +x*O(x^n))^2)); n!*polcoeff(sqrt(1+S^2) + S, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
E.g.f. exp( Series_Reversion( ( sinh(x)/cosh(x)^2 + atan(sinh(x)) )/2 ) ).
E.g.f. C(x) + S(x) where related series S(x) and C(x) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).

A281183 E.g.f. C(x)^2 = cosh( Integral C(x)^3 dx )^2 where C(x) is described by A281181.

Original entry on oeis.org

1, 2, 32, 1376, 114176, 15519488, 3132551168, 879422726144, 327670676455424, 156439068819587072, 93116847688811282432, 67602541384815095054336, 58796336342280763841970176, 60351125684887424790500999168, 72187248798124538021926003539968, 99529442030183464236437157900713984, 156697512616609083360755035696397287424
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2017

Keywords

Examples

			E.g.f.: C(x)^2 = 1 + 2*x^2/2! + 32*x^4/4! + 1376*x^6/6! + 114176*x^8/8! + 15519488*x^10/10! + 3132551168*x^12/12! + 879422726144*x^14/14! + 327670676455424*x^16/16! + 156439068819587072*x^18/18! +...
such that C(x)^2 = 1 + S(x)^2 and the series for C(x) and S(x) begin:
C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! +...+ A281181(n)*x^(2*n)/(2*n)! +...
S(x) = S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +...
		

Crossrefs

Cf. A281180 (S), A281181 (C), A281182 (C+S), A281184 (C^3).

Programs

  • PARI
    {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^4 +x*O(x^(2*n))); C = 1 + intformal( S*C^3 ) ); (2*n)!*polcoeff(C^2, 2*n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ) */
    {a(n) = my(C2=x); C2 = deriv( serreverse( intformal( cos(x +x*O(x^(2*n)))^2 ))); (2*n)!*polcoeff(C2, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
E.g.f. C(x)^2 = d/dx Series_Reversion( (2*x + sin(2*x))/4 ).
E.g.f. C(x)^2 where related series S(x) and C(x) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^4 - S(x)^4)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).

A281184 E.g.f. C(x)^3 = d/dx log(C(x) + S(x)), where C(x) and S(x) are described by A281181 and A281180, respectively.

Original entry on oeis.org

1, 3, 57, 2739, 246801, 35822307, 7636142793, 2246286827091, 871869519033249, 431649452286233283, 265466419357802436057, 198541440131880248161779, 177448471205103040365902001, 186781461066456338787698757027, 228695537454759099917373077023593, 322272887805877963568678968978370451, 517868815187736150011294497645677002049
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2017

Keywords

Examples

			E.g.f.: C(x)^3 = 1 + 3*x^2/2! + 57*x^4/4! + 2739*x^6/6! + 246801*x^8/8! + 35822307*x^10/10! + 7636142793*x^12/12! + 2246286827091*x^14/14! + 871869519033249*x^16/16! + 431649452286233283*x^18/18! +...
where related series C(x) and S(x) begin:
C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! +...+ A281181(n)*x^(2*n)/(2*n)! +...
S(x) = S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +...
Also, the logarithm of C(x) + S(x) begins:
log(C(x) + S(x)) = x + 3*x^3/3! + 57*x^5/5! + 2739*x^7/7! + 246801*x^9/9! + 35822307*x^11/11! + 7636142793*x^13/13! + 2246286827091*x^15/15! +...
which equals Integral C(x)^3 dx.
		

Crossrefs

Cf. A281180 (S), A281181 (C), A281182 (C+S), A281183 (C^2).

Programs

  • PARI
    {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^4 +x*O(x^(2*n))); C = 1 + intformal( S*C^3 ) ); (2*n)!*polcoeff(C^3, 2*n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* E.g.f. d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ) */
    {a(n) = my(C3=1); C3 = deriv( serreverse( intformal( 1/cosh(x +x*O(x^(2*n)))^3 ) ) ); (2*n)!*polcoeff(C3, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).
E.g.f. C(x)^3 = d/dx Series_Reversion( ( sinh(x)/cosh(x)^2 + atan(sinh(x)) )/2 ).
E.g.f. C(x)^3 = d/dx log(C(x) + S(x)) where C(x) and S(x) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).

A281180 E.g.f. S(x) satisfies: S(x) = Integral (1 + S(x)^2)^2 dx.

Original entry on oeis.org

1, 4, 88, 4672, 454144, 70084096, 15728822272, 4836914249728, 1952137912385536, 1000749157519458304, 635146072839001735168, 488855521088102855606272, 448599416591747486039670784, 483861305506660094099058589696, 606050665000453965359938841608192, 872366179652871528356910686198038528, 1430068361869553198039835379199635357696, 2648687881942689612933392158083076801429504, 5503854158077547090902251582359116752300802048
Offset: 1

Views

Author

Paul D. Hanna, Jan 16 2017

Keywords

Examples

			E.g.f.: S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! + 1000749157519458304*x^19/19! + 635146072839001735168*x^21/21! +...
such that
(1) C(x)^2 - S(x)^2 = 1, and
(2) S'(x) = C(x)^4,
where C(x) begins:
C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! + 39504564917358001*x^18/18! + 22726779729476308093*x^20/20! +...+ A281181(n)*x^(2*n)/(2*n)! +...
RELATED SERIES.
As power series with reduced fractional coefficients, S(x) and C(x) begin:
S(x) = x + 2/3*x^3 + 11/15*x^5 + 292/315*x^7 + 3548/2835*x^9 + 273766/155925*x^11 + 15360178/6081075*x^13 + 214706776/58046625*x^15 +...
C(x) = 1 + 1/2*x^2 + 13/24*x^4 + 493/720*x^6 + 37369/40320*x^8 + 4732249/3628800*x^10 + 901188997/479001600*x^12 + 240798388357/87178291200*x^14 +...
The series reversion of the e.g.f. begins:
Series_Reversion(S(x)) = x - 2/3*x^3 + 3/5*x^5 - 4/7*x^7 + 5/9*x^9 - 6/11*x^11 + 7/13*x^13 - 8/15*x^15 +...
which equals ( x/(1+x^2) + atan(x) )/2.
Related powers of series C(x) are given as follows.
C(x)^2 = 1 + 2*x^2/2! + 32*x^4/4! + 1376*x^6/6! + 114176*x^8/8! + 15519488*x^10/10! + 3132551168*x^12/12! + 879422726144*x^14/14! + 327670676455424*x^16/16! + 156439068819587072*x^18/18! +...+ A281183(n)*x^(2*n)/(2*n)! +...
where C(x)^2 = 1 + S(x)^2.
C(x)^3 = 1 + 3*x^2/2! + 57*x^4/4! + 2739*x^6/6! + 246801*x^8/8! + 35822307*x^10/10! + 7636142793*x^12/12! + 2246286827091*x^14/14! + 871869519033249*x^16/16! + 431649452286233283*x^18/18! +...+ A281184(n)*x^(2*n)/(2*n)! +...
where C(x)^3 = d/dx log( C(x) + S(x) ).
C(x)^4 = 1 + 4*x^2/2! + 88*x^4/4! + 4672*x^6/6! + 454144*x^8/8! + 70084096*x^10/10! + 15728822272*x^12/12! + 4836914249728*x^14/14! + 1952137912385536*x^16/16! + 1000749157519458304*x^18/18! +...
where C(x)^4 = d/dx S(x).
		

Crossrefs

Cf. A281181 (C), A281182 (C+S), A281183 (C^2), A281184 (C^3).

Programs

  • Mathematica
    nMax = 30; m = maxExponent = 2*nMax; a[n_] := Module[{S = x, C = 1}, For[i = 1, i <= n, i++, S = Integrate[C^4 + x*O[x]^m // Normal, x] + O[x]^m // Normal; C = 1 + Integrate[S*C^3 + O[x]^m // Normal, x]] + O[x]^m // Normal; (2*n - 1)!*Coefficient[S, x, 2*n - 1]]; Table[an = a[n]; Print[ "a(", n, ") = ", an]; an, {n, 1, nMax}] (* Jean-François Alcover, Jan 20 2017, adapted from first PARI program *)
    nmax = 20; Table[(CoefficientList[InverseSeries[Series[(x/(1 + x^2) + ArcTan[x])/2, {x, 0, 2*nmax - 1}], x], x] * Range[0, 2*nmax - 1]!)[[2*n]], {n, 1, nmax}] (* Vaclav Kotesovec, Sep 02 2017 *)
  • PARI
    {a(n) = my(S=x,C=1); for(i=1,n, S = intformal( C^4 +x*O(x^(2*n))); C = 1 + intformal( S*C^3 ) ); (2*n-1)!*polcoeff(S,2*n-1)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    /* S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ) */
    {a(n) = my(S=x); S = serreverse( intformal( 1/(1 + x^2 +x*O(x^(2*n)))^2)); (2*n-1)!*polcoeff(S,2*n-1)}
    for(n=1,30,print1(a(n),", "))

Formula

E.g.f. S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
E.g.f. S(x) = Series_Reversion( ( x/(1+x^2) + atan(x) )/2 ).
E.g.f. S(x) and related series C(x) (e.g.f. of A281181) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).

Extensions

Name simplified by Paul D. Hanna, Jan 22 2017

A281428 E.g.f. C(x) satisfies: C(x) = cosh( Integral C(x)^4 dx ).

Original entry on oeis.org

1, 1, 17, 865, 88865, 15335425, 3993275825, 1462392957025, 716611617346625, 452780458211706625, 358439197464543820625, 347486061804813737430625, 404905203733448633060470625, 558379985997479451541000890625, 899457522079287575519574474640625, 1673555570600439849976672764510390625, 3562028724551236205811767300836022890625
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2017

Keywords

Examples

			E.g.f.: C(x) = 1 + x^2/2! + 17*x^4/4! + 865*x^6/6! + 88865*x^8/8! + 15335425*x^10/10! + 3993275825*x^12/12! + 1462392957025*x^14/14! + 716611617346625*x^16/16! + 452780458211706625*x^18/18! + 358439197464543820625*x^20/20! +...
such that
(1) C(x) = cosh( Integral C(x)^4 dx ),
(2) C(x)^2 - S(x)^2 = 1, and
(3) C(x) = 1 + Integral C(x)^4*S(x) dx,
where S(x) is described by A281427 and begins:
S(x) = x + 5*x^3/3! + 145*x^5/5! + 10325*x^7/7! + 1357825*x^9/9! + 284963525*x^11/11! + 87274812625*x^13/13! + 36716097543125*x^15/15! + 20309401097610625*x^17/17! + 14290053364475013125*x^19/19! +...
		

Programs

  • Mathematica
    a[n_] := Module[{S = x, C = 1, C5, SC4}, For[i = 0, i <= n, i++, C5 = C^5 + x*O[x]^(2n) // Normal; S = Integrate[C5 , x]; SC4 = S*C^4+O[x]^(2n) // Normal; C = 1 + Integrate[SC4, x]]; (2n)!*Coefficient[C, x, 2n]]; Array[a, 17, 0] (* Jean-François Alcover, Mar 01 2017, translated from Pari *)
  • PARI
    {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^5 +x*O(x^(2*n))); C = 1 + intformal( S*C^4 ) ); (2*n)!*polcoeff(C, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. C(x) = ( d/dx Series_Reversion( x - x^3/3 ) )^(1/2).
E.g.f. C(x) = ( d/dx Series_Reversion( sin(x) - sin(x)^3/3 ) )^(1/3).
E.g.f. C(x) = ( d/dx Series_Reversion( sinh(x)*(2 + cosh(2*x))/(3*cosh(x)^3) ) )^(1/4).
E.g.f. C(x) = ( d/dx Series_Reversion( x*sqrt(1+x^2)*(3 + 2*x^2)/(3*(1 + x^2)^2) ) )^(1/5).
E.g.f. C(x) = d/dx Series_Reversion( Integral 1/G(x) dx ) where G(x) = e.g.f. of A281181.
E.g.f. C(x) = ( d/dx Series_Reversion( Integral (1 - x^2) dx ) )^(1/2).
E.g.f. C(x) = ( d/dx Series_Reversion( Integral cos(x)^3 dx ) )^(1/3).
E.g.f. C(x) = ( d/dx Series_Reversion( Integral 1/cosh(x)^4 dx ) )^(1/4).
E.g.f. C(x) = ( d/dx Series_Reversion( Integral 1/(1 + x^2)^(5/2) dx ) )^(1/5).
E.g.f. C(x) = ( d/dx Series_Reversion( Integral G(i*x)^6 dx ) )^(1/6) where G(x) = e.g.f. of A281181.
E.g.f. C(x) and related series S(x) (e.g.f. of A281427) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^5*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^5 dx.
(2.b) C(x) = 1 + Integral C(x)^4*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^4 dx ).
(3.b) C(x) = cosh( Integral C(x)^4 dx ).
(3.c) S(x) = sinh( Integral C(x)^4 dx ).
Derivatives.
(4.a) S'(x) = C(x)^5.
(4.b) C'(x) = C(x)^4*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^4.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^5*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^(5/2) dx ).
(5.b) C(x)^1 = d/dx Series_Reversion( Integral 1/G(x) dx ) where G(x) = e.g.f. of A281181.
(5.c) C(x)^2 = d/dx Series_Reversion( Integral (1 - x^2) dx ).
(5.d) C(x)^3 = d/dx Series_Reversion( Integral cos(x)^3 dx ).
(5.e) C(x)^4 = d/dx Series_Reversion( Integral 1/cosh(x)^4 dx ).
(5.f) C(x)^5 = d/dx Series_Reversion( Integral 1/(1 + x^2)^(5/2) dx ).
(5.g) C(x)^6 = d/dx Series_Reversion( Integral G(i*x)^6 dx ) where G(x) = e.g.f. of A281181.
(5.h) C(x)^2 = d/dx Series_Reversion( x - x^3/3 ).
(5.j) C(x)^3 = d/dx Series_Reversion( sin(x) - sin(x)^3/3 ).
(5.j) C(x)^4 = d/dx Series_Reversion( sinh(x)*(2 + cosh(2*x))/(3*cosh(x)^3) ).
(5.k) C(x)^5 = d/dx Series_Reversion( x*sqrt(1+x^2)*(3 + 2*x^2)/(3*(1 + x^2)^2) ).
Showing 1-5 of 5 results.