cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281358 Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 6 times.

Original entry on oeis.org

1, 7, 6427, 216864652, 60790021361170, 79397199549271412737, 350521520018942991464535019, 4247805448772073978048752721163278, 122022975450467092259059357046375920848764, 7449370563518425038119522091529589590475534631830
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2017

Keywords

Comments

The result from the recurrence has been confirmed up to a(63) by using an optimized version of equation (23) in the Applegate-Sloane paper. - Lars Blomberg, Feb 01 2017

Crossrefs

The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are A001515, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 7, n), k=0..7*n):
    seq(a(n), n=0..12);  # Alois P. Heinz, Feb 01 2017
  • Mathematica
    t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 7*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 6}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 7*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 18 2017 *)
  • PARI
    {a(n) = sum(i=n, 7*n, i!*polcoef(sum(j=1, 7, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019

Extensions

More terms from Lars Blomberg, Feb 01 2017