cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281381 a(n) = n*(n + 1)*(4*n + 5)/2.

Original entry on oeis.org

0, 9, 39, 102, 210, 375, 609, 924, 1332, 1845, 2475, 3234, 4134, 5187, 6405, 7800, 9384, 11169, 13167, 15390, 17850, 20559, 23529, 26772, 30300, 34125, 38259, 42714, 47502, 52635, 58125, 63984, 70224, 76857, 83895, 91350, 99234, 107559, 116337, 125580, 135300, 145509, 156219, 167442, 179190, 191475
Offset: 0

Views

Author

Peter M. Chema, Jan 21 2017

Keywords

Comments

Shares its digital root, zero together with period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9] with A027480.
Final digits cycle a length period 20: repeat [0, 9, 9, 2, 0, 5, 9, 4, 2, 5, 5, 4, 4, 7, 5, 0, 4, 9, 7, 0].

Crossrefs

Partial sums of A195319.

Programs

  • Magma
    [n*(n+1)*(4*n+5)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 30 2022
  • Mathematica
    Table[n (n + 1) (4 n + 5)/2, {n, 0, 45}] (* or *)
    CoefficientList[Series[3 x (3 + x)/(1 - x)^4, {x, 0, 45}], x] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    concat(0, Vec(3*x*(3 + x) / (1 - x)^4 + O(x^50))) \\ Colin Barker, Jan 21 2017
    
  • PARI
    a(n) = n*(n + 1)*(4*n + 5)/2 \\ Charles R Greathouse IV, Feb 01 2017
    

Formula

a(n) = 2*n^3 + 9*n^2/2 + 5*n/2.
a(n) = 3*A016061(n).
a(n) = A006002(n+1)*(n) - A006002(n)*(n-1).
a(n) = A007742(n)*(n - 1)/2.
From Colin Barker, Jan 21 2017: (Start)
G.f.: 3*x*(3 + x) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
From Stefano Spezia, Aug 30 2022: (Start)
E.g.f.: exp(x)*x*(18 + 21*x + 4*x^2)/2.
Sum_{n>0} 1/a(n) = 2*(20*log(8) + 10*Pi - 71)/25 = 0.1603805895595720759728288896228498341201... . (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(2)*Pi/5 + 4*(3+sqrt(2))*log(2)/5 - 8*sqrt(2)*log(2-sqrt(2))/5 - 178/25. - Amiram Eldar, Sep 22 2022