A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).
1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3000
- A. M. Odlyzko, Differences of the partition function, Acta Arithmetica 49.3 (1988): 237-254.
- Dennis Stanton and Doron Zeilberger, The Odlyzko conjecture and O’Hara’s unimodality proof, Proceedings of the American Mathematical Society 107.1 (1989): 39-42.
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=0, combinat[numbpart](n), b(n, k-1)-b(n-1, k-1)) end: a:= n-> b(n$2): seq(a(n), n=0..35); # Alois P. Heinz, Dec 21 2024
-
Mathematica
Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}] Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}] Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}] Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)
Formula
a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1))).
a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017
a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018
Comments