cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281489 Number of partitions of n^2 into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 33, 93, 276, 833, 2574, 8057, 25565, 81889, 264703, 861889, 2824974, 9311875, 30851395, 102676439, 343112116, 1150785092, 3872588051, 13071583810, 44245023261, 150145281903, 510721124972, 1741020966255, 5947081503460, 20352707950277
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2017

Keywords

Examples

			a(0) = 1: [], the empty partition.
a(1) = 1: [1].
a(2) = 1: [1,3].
a(3) = 2: [1,3,5], [9].
a(4) = 5: [1,3,5,7], [7,9], [5,11], [3,13], [1,15].
a(5) = 12: [1,3,5,7,9], [5,9,11], [5,7,13], [3,9,13], [1,11,13], [3,7,15], [1,9,15], [3,5,17], [1,7,17], [1,5,19], [1,3,21], [25].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
          [0, 1, -1, 1][1+irem(d, 4)], d=divisors(j)), j=1..n)/n)
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[b[n-j]*Sum[d*{0, 1, -1, 1}[[1+Mod[d, 4]]], {d, Divisors[j]}], {j, 1, n}]/n];
    a[n_] := b[n^2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = [x^(n^2)] Product_{j>=0} (1 + x^(2*j+1)).
a(n) = A000700(A000290(n)).
a(n) ~ exp(Pi*n/sqrt(6)) / (2^(7/4) * 3^(1/4) * n^(3/2)). - Vaclav Kotesovec, Apr 10 2017