A281489 Number of partitions of n^2 into distinct odd parts.
1, 1, 1, 2, 5, 12, 33, 93, 276, 833, 2574, 8057, 25565, 81889, 264703, 861889, 2824974, 9311875, 30851395, 102676439, 343112116, 1150785092, 3872588051, 13071583810, 44245023261, 150145281903, 510721124972, 1741020966255, 5947081503460, 20352707950277
Offset: 0
Keywords
Examples
a(0) = 1: [], the empty partition. a(1) = 1: [1]. a(2) = 1: [1,3]. a(3) = 2: [1,3,5], [9]. a(4) = 5: [1,3,5,7], [7,9], [5,11], [3,13], [1,15]. a(5) = 12: [1,3,5,7,9], [5,9,11], [5,7,13], [3,9,13], [1,11,13], [3,7,15], [1,9,15], [3,5,17], [1,7,17], [1,5,19], [1,3,21], [25].
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..507 (terms 0..200 from Alois P. Heinz)
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d* [0, 1, -1, 1][1+irem(d, 4)], d=divisors(j)), j=1..n)/n) end: a:= n-> b(n^2): seq(a(n), n=0..30);
-
Mathematica
b[n_] := b[n] = If[n==0, 1, Sum[b[n-j]*Sum[d*{0, 1, -1, 1}[[1+Mod[d, 4]]], {d, Divisors[j]}], {j, 1, n}]/n]; a[n_] := b[n^2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
Formula
a(n) = [x^(n^2)] Product_{j>=0} (1 + x^(2*j+1)).
a(n) ~ exp(Pi*n/sqrt(6)) / (2^(7/4) * 3^(1/4) * n^(3/2)). - Vaclav Kotesovec, Apr 10 2017