cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107379 Number of ways to write n^2 as the sum of n odd numbers, disregarding order.

Original entry on oeis.org

1, 1, 1, 3, 9, 30, 110, 436, 1801, 7657, 33401, 148847, 674585, 3100410, 14422567, 67792847, 321546251, 1537241148, 7400926549, 35854579015, 174677578889, 855312650751, 4207291811538, 20782253017825, 103048079556241, 512753419159803, 2559639388956793
Offset: 0

Views

Author

David Radcliffe, Sep 25 2009

Keywords

Comments

Motivated by the fact that the n-th square is equal to the sum of the first n odd numbers.
Also the number of partitions of n^2 into n distinct parts. a(3) = 3: [1,2,6], [1,3,5], [2,3,4]. - Alois P. Heinz, Jan 20 2011
Also the number of partitions of n*(n-1)/2 into parts not greater than n. - Paul D. Hanna, Feb 05 2012
Also the number of partitions of n*(n+1)/2 into n parts. - J. Stauduhar, Sep 05 2017
Also the number of fair dice with n sides and expected value (n+1)/2 with distinct composition of positive integers. - Felix Huber, Aug 11 2024

Examples

			For example, 9 can be written as a sum of three odd numbers in 3 ways: 1+1+7, 1+3+5 and 3+3+3.
		

Crossrefs

Programs

  • Maple
    f := proc (n, k) option remember;
    if n = 0 and k = 0 then return 1 end if;
    if n <= 0 or n < k then return 0 end if;
    if `mod`(n+k, 2) = 1 then return 0 end if;
    if k = 1 then return 1 end if;
    return procname(n-1, k-1) + procname(n-2*k, k)
    end proc;
    seq(f(k^2,k), k=0..20);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n*(n-1)/2)))),n*(n-1)/2)} /* Paul D. Hanna, Feb 05 2012 */

Formula

a(n) = A008284((n^2+n)/2,n) = A008284(A000217(n),n). - Max Alekseyev, Sep 25 2009
a(n) = [x^(n*(n-1)/2)] Product_{k=1..n} 1/(1 - x^k). - Paul D. Hanna, Feb 05 2012
a(n) ~ c * d^n / n^2, where d = 5.400871904118154152466091119104270052029... = A258234, c = 0.155212227152682180502977404265024265... . - Vaclav Kotesovec, Sep 07 2014

Extensions

Arguments in the Maple program swapped and 4 terms added by R. J. Mathar, Oct 02 2009

A072243 Number of distinct partitions of n^2.

Original entry on oeis.org

1, 1, 2, 8, 32, 142, 668, 3264, 16444, 84756, 444793, 2368800, 12769602, 69545358, 382075868, 2114965120, 11784471548, 66043042088, 372022512608, 2105220502772, 11962163400706, 68223286792200, 390406746862530, 2240962117491470, 12899456450932840
Offset: 0

Views

Author

Robert G. Wilson v, Jul 06 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 22 2017
  • Mathematica
    Table[ PartitionsQ[n^2], {n, 1, 24}]

Formula

a(n) ~ exp(Pi*n/sqrt(3)) / (4*3^(1/4)*n^(3/2)). - Vaclav Kotesovec, Dec 01 2015
a(n) = A000009(A000290(n)). - Alois P. Heinz, Jan 22 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 22 2017

A347626 Number of partitions of n^n into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 14, 2824974, 7375247711025022789604527681
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2021

Keywords

Comments

The next term a(6) = 1.46058224...*10^116 is too large to include.

Crossrefs

Main diagonal of A347630.

Programs

  • PARI
    a(n) = polcoef(prod(k=0, n^n\2, 1+x^(2*k+1)+x*O(x^(n^n))), n^n);

Formula

a(n) = [x^(n^n)] Product_{k>=0} (1 + x^(2*k+1)).
a(n) = A000700(n^n).

A347630 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 14, 5, 1, 1, 1, 1, 23, 833, 276, 12, 1, 1, 1, 1, 276, 1731778, 2824974, 9912, 33, 1, 1, 1, 1, 11564, 1741020966255, 824068326214949, 150145281903, 602245, 93, 2, 1, 1, 1, 2824974, 78444810948209793568790, 195321031346209256918890884699755, 7375247711025022789604527681, 116880108216597935, 57638873, 276, 2, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2021

Keywords

Examples

			Square array begins:
  1, 1,  1,    1,            1,                            1, ...
  1, 1,  1,    1,            1,                            1, ...
  1, 0,  1,    2,            5,                           23, ...
  1, 1,  2,   14,          833,                      1731778, ...
  1, 1,  5,  276,      2824974,              824068326214949, ...
  1, 1, 12, 9912, 150145281903, 7375247711025022789604527681, ...
		

Crossrefs

Columns k=0..2 give A000012, A000700, A281489.
Main diagonal gives A347626.
Cf. A347621.

Programs

  • PARI
    T(n, k) = polcoef(prod(j=0, n^k\2, 1+x^(2*j+1)+x*O(x^(n^k))), n^k);

Formula

T(n,k) = A000700(n^k).
Showing 1-4 of 4 results.