cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347621 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 8, 2, 1, 1, 1, 32, 192, 32, 3, 1, 1, 1, 390, 84756, 16444, 142, 4, 1, 1, 1, 16444, 5807301632, 11784471548, 3207086, 668, 5, 1, 1, 1, 4013544, 2496696209705056142, 16816734263788624008200, 74443865946867656, 1258238720, 3264, 6, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2021

Keywords

Examples

			Square array begins:
  1, 1,  1,     1,           1, ...
  1, 1,  1,     1,           1, ...
  1, 1,  2,     6,          32, ...
  1, 2,  8,   192,       84756, ...
  1, 2, 32, 16444, 11784471548, ...
		

Crossrefs

Columns k=0..3 give A000012, A000009, A072243, A281501.
Rows n=0+1, 2-3 give A000012, A067735, A070235.
Main diagonal gives A064682.

Programs

  • Mathematica
    Table[If[n == k == 0, 1, PartitionsQ[#^k] &[n - k]], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Sep 09 2021 *)
  • PARI
    T(n, k) = polcoef(prod(j=1, n^k, 1+x^j+x*O(x^(n^k))), n^k);

Formula

T(n,k) = A000009(n^k).

A347626 Number of partitions of n^n into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 14, 2824974, 7375247711025022789604527681
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2021

Keywords

Comments

The next term a(6) = 1.46058224...*10^116 is too large to include.

Crossrefs

Main diagonal of A347630.

Programs

  • PARI
    a(n) = polcoef(prod(k=0, n^n\2, 1+x^(2*k+1)+x*O(x^(n^n))), n^n);

Formula

a(n) = [x^(n^n)] Product_{k>=0} (1 + x^(2*k+1)).
a(n) = A000700(n^n).

A347654 Number of partitions of 10^n into distinct odd parts.

Original entry on oeis.org

1, 2, 2574, 517035762467311, 11296895312655297284351876487257601933458562000884410
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2021

Keywords

Comments

The next term a(5) = 5.5425352720...*10^171 is too large to include.

Crossrefs

Programs

  • PARI
    a(n) = polcoef(prod(k=0, 10^n\2, 1+x^(2*k+1)+x*O(x^(10^n))), 10^n);

Formula

a(n) = A000700(10^n).
Showing 1-3 of 3 results.