cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347615 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 22, 30, 5, 1, 1, 1, 231, 3010, 231, 7, 1, 1, 1, 8349, 18004327, 1741630, 1958, 11, 1, 1, 1, 1741630, 133978259344888, 365749566870782, 3163127352, 17977, 15, 1, 1, 1, 4351078600, 233202632378520643600875145, 61847822068260244309086870983975, 1606903190858354689128371, 15285151248481, 173525, 22, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,       1,               1, ...
  1, 1,   1,       1,               1, ...
  1, 2,   5,      22,             231, ...
  1, 3,  30,    3010,        18004327, ...
  1, 5, 231, 1741630, 365749566870782, ...
		

Crossrefs

Columns k=0..3 give A000012, A000041, A072213, A128854.
Rows n=0+1, 2-10 give A000012, A068413, A248728, A068413(2*n), A248730, A248732, A248734, A068413(3*n), A248728(2*n), A070177.
Main diagonal gives A347607.

Programs

  • PARI
    T(n, k) = numbpart(n^k);

Formula

T(n,k) = A000041(n^k).

A069878 Number of partitions of 10^n into distinct parts.

Original entry on oeis.org

1, 10, 444793, 8635565795744155161506, 1122606574548038398976040173670530159089991444775125551802871247408332723840
Offset: 0

Views

Author

Robert G. Wilson v, May 03 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ PartitionsQ[10^n], {n, 0, 4}]
  • PARI
    a(n) = polcoef(prod(k=1, 10^n, 1+x^k+x*O(x^(10^n))), 10^n); \\ Seiichi Manyama, Sep 10 2021

Formula

a(n) = A000009(A011557(n)). - Michel Marcus, Sep 10 2021

A347630 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 14, 5, 1, 1, 1, 1, 23, 833, 276, 12, 1, 1, 1, 1, 276, 1731778, 2824974, 9912, 33, 1, 1, 1, 1, 11564, 1741020966255, 824068326214949, 150145281903, 602245, 93, 2, 1, 1, 1, 2824974, 78444810948209793568790, 195321031346209256918890884699755, 7375247711025022789604527681, 116880108216597935, 57638873, 276, 2, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2021

Keywords

Examples

			Square array begins:
  1, 1,  1,    1,            1,                            1, ...
  1, 1,  1,    1,            1,                            1, ...
  1, 0,  1,    2,            5,                           23, ...
  1, 1,  2,   14,          833,                      1731778, ...
  1, 1,  5,  276,      2824974,              824068326214949, ...
  1, 1, 12, 9912, 150145281903, 7375247711025022789604527681, ...
		

Crossrefs

Columns k=0..2 give A000012, A000700, A281489.
Main diagonal gives A347626.
Cf. A347621.

Programs

  • PARI
    T(n, k) = polcoef(prod(j=0, n^k\2, 1+x^(2*j+1)+x*O(x^(n^k))), n^k);

Formula

T(n,k) = A000700(n^k).
Showing 1-3 of 3 results.