cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A072213 Number of partitions of n^2.

Original entry on oeis.org

1, 1, 5, 30, 231, 1958, 17977, 173525, 1741630, 18004327, 190569292, 2056148051, 22540654445, 250438925115, 2814570987591, 31946390696157, 365749566870782, 4219388528587095, 49005643635237875, 572612058898037559
Offset: 0

Views

Author

Jeff Burch, Jul 03 2002

Keywords

Crossrefs

Programs

  • Maple
    A072213 := proc(n) combinat[numbpart](n^2) ; end proc:
    seq(A072213(n),n=0..10) ; # R. J. Mathar, Jan 24 2011
  • Mathematica
    Table[ PartitionsP[n^2], {n, 1, 20}]
  • PARI
    a(n)=numbpart(n^2)
    
  • PARI
    a(n)=polcoeff(1/eta(x),n^2,x)
    
  • Sage
    [number_of_partitions(n^2)for n in range(0,26)] # Zerinvary Lajos, Nov 26 2009

Formula

a(n) = A000041(n^2).
a(n) ~ exp(Pi*sqrt(2/3)*n) / (4*sqrt(3)*n^2). - Vaclav Kotesovec, Dec 01 2015

A107379 Number of ways to write n^2 as the sum of n odd numbers, disregarding order.

Original entry on oeis.org

1, 1, 1, 3, 9, 30, 110, 436, 1801, 7657, 33401, 148847, 674585, 3100410, 14422567, 67792847, 321546251, 1537241148, 7400926549, 35854579015, 174677578889, 855312650751, 4207291811538, 20782253017825, 103048079556241, 512753419159803, 2559639388956793
Offset: 0

Views

Author

David Radcliffe, Sep 25 2009

Keywords

Comments

Motivated by the fact that the n-th square is equal to the sum of the first n odd numbers.
Also the number of partitions of n^2 into n distinct parts. a(3) = 3: [1,2,6], [1,3,5], [2,3,4]. - Alois P. Heinz, Jan 20 2011
Also the number of partitions of n*(n-1)/2 into parts not greater than n. - Paul D. Hanna, Feb 05 2012
Also the number of partitions of n*(n+1)/2 into n parts. - J. Stauduhar, Sep 05 2017
Also the number of fair dice with n sides and expected value (n+1)/2 with distinct composition of positive integers. - Felix Huber, Aug 11 2024

Examples

			For example, 9 can be written as a sum of three odd numbers in 3 ways: 1+1+7, 1+3+5 and 3+3+3.
		

Crossrefs

Programs

  • Maple
    f := proc (n, k) option remember;
    if n = 0 and k = 0 then return 1 end if;
    if n <= 0 or n < k then return 0 end if;
    if `mod`(n+k, 2) = 1 then return 0 end if;
    if k = 1 then return 1 end if;
    return procname(n-1, k-1) + procname(n-2*k, k)
    end proc;
    seq(f(k^2,k), k=0..20);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n*(n-1)/2)))),n*(n-1)/2)} /* Paul D. Hanna, Feb 05 2012 */

Formula

a(n) = A008284((n^2+n)/2,n) = A008284(A000217(n),n). - Max Alekseyev, Sep 25 2009
a(n) = [x^(n*(n-1)/2)] Product_{k=1..n} 1/(1 - x^k). - Paul D. Hanna, Feb 05 2012
a(n) ~ c * d^n / n^2, where d = 5.400871904118154152466091119104270052029... = A258234, c = 0.155212227152682180502977404265024265... . - Vaclav Kotesovec, Sep 07 2014

Extensions

Arguments in the Maple program swapped and 4 terms added by R. J. Mathar, Oct 02 2009

A281489 Number of partitions of n^2 into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 33, 93, 276, 833, 2574, 8057, 25565, 81889, 264703, 861889, 2824974, 9311875, 30851395, 102676439, 343112116, 1150785092, 3872588051, 13071583810, 44245023261, 150145281903, 510721124972, 1741020966255, 5947081503460, 20352707950277
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2017

Keywords

Examples

			a(0) = 1: [], the empty partition.
a(1) = 1: [1].
a(2) = 1: [1,3].
a(3) = 2: [1,3,5], [9].
a(4) = 5: [1,3,5,7], [7,9], [5,11], [3,13], [1,15].
a(5) = 12: [1,3,5,7,9], [5,9,11], [5,7,13], [3,9,13], [1,11,13], [3,7,15], [1,9,15], [3,5,17], [1,7,17], [1,5,19], [1,3,21], [25].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
          [0, 1, -1, 1][1+irem(d, 4)], d=divisors(j)), j=1..n)/n)
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[b[n-j]*Sum[d*{0, 1, -1, 1}[[1+Mod[d, 4]]], {d, Divisors[j]}], {j, 1, n}]/n];
    a[n_] := b[n^2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = [x^(n^2)] Product_{j>=0} (1 + x^(2*j+1)).
a(n) = A000700(A000290(n)).
a(n) ~ exp(Pi*n/sqrt(6)) / (2^(7/4) * 3^(1/4) * n^(3/2)). - Vaclav Kotesovec, Apr 10 2017

A126683 Number of partitions of the n-th triangular number n(n+1)/2 into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 33, 68, 144, 312, 686, 1523, 3405, 7652, 17284, 39246, 89552, 205253, 472297, 1090544, 2525904, 5867037, 13663248, 31896309, 74628130, 174972341, 411032475, 967307190, 2280248312, 5383723722, 12729879673, 30141755384, 71462883813
Offset: 0

Views

Author

Moshe Shmuel Newman, Feb 15 2007

Keywords

Comments

Also the number of self-conjugate partitions of the n-th triangular number.

Examples

			The 5th triangular number is 15. Writing this as a sum of distinct odd numbers: 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3 are all the possibilities. So a(5) = 4.
		

Crossrefs

Sequences A066655 and A104383 do the same thing for triangular numbers, with partitions or distinct partitions. Sequences A072213 and A072243 are analogs for squares rather than triangular numbers.
Cf. A000217.

Programs

  • Maple
    g:= mul(1+x^(2*j+1),j=0..900): seq(coeff(g,x,n*(n+1)/2),n=0..40); # Emeric Deutsch, Feb 27 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i^2n, 0, b(n-2*i+1, i-1))))
        end:
    a:= n-> b(n*(n+1)/2, ceil(n*(n+1)/4)*2-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 31 2018
  • Mathematica
    a[n_] := SeriesCoefficient[QPochhammer[-x, x^2], {x, 0, n*(n+1)/2}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 25 2018 *)

Extensions

More terms from Emeric Deutsch, Feb 27 2007
a(0)=1 prepended by Alois P. Heinz, Jan 31 2018

A347621 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 8, 2, 1, 1, 1, 32, 192, 32, 3, 1, 1, 1, 390, 84756, 16444, 142, 4, 1, 1, 1, 16444, 5807301632, 11784471548, 3207086, 668, 5, 1, 1, 1, 4013544, 2496696209705056142, 16816734263788624008200, 74443865946867656, 1258238720, 3264, 6, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2021

Keywords

Examples

			Square array begins:
  1, 1,  1,     1,           1, ...
  1, 1,  1,     1,           1, ...
  1, 1,  2,     6,          32, ...
  1, 2,  8,   192,       84756, ...
  1, 2, 32, 16444, 11784471548, ...
		

Crossrefs

Columns k=0..3 give A000012, A000009, A072243, A281501.
Rows n=0+1, 2-3 give A000012, A067735, A070235.
Main diagonal gives A064682.

Programs

  • Mathematica
    Table[If[n == k == 0, 1, PartitionsQ[#^k] &[n - k]], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Sep 09 2021 *)
  • PARI
    T(n, k) = polcoef(prod(j=1, n^k, 1+x^j+x*O(x^(n^k))), n^k);

Formula

T(n,k) = A000009(n^k).

A173493 Number of distinct squares that can be partitioned into distinct divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 4, 5, 1, 6, 1, 6, 3, 3, 1, 7, 2, 2, 4, 7, 1, 8, 1, 7, 3, 2, 2, 9, 1, 1, 3, 9, 1, 9, 1, 7, 7, 3, 1, 11, 2, 5, 2, 4, 1, 10, 2, 10, 2, 1, 1, 12, 1, 2, 7, 11, 1, 12, 1, 4, 2, 11, 1, 13, 1, 1, 9, 7, 1, 12, 1, 13, 6, 1, 1, 14, 1, 1, 2, 13, 1, 15, 1, 6, 2, 3, 3, 15, 1, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

The partitions of the squares are generally not unique, see examples.

Examples

			divisors(9) = {1, 3, 9}: a(9) = #{1, 3+1, 9} = 3.
divisors(10) = {1, 2, 5, 10}: a(10) = #{1, 10+5+1} = 2.
divisors(12) = {1,2,3,4,6,12}: a(12) = #{1,4,9,16,25} = 5:
  2^2 = 4 = 3 + 1,
  3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,
  4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,
  5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1.
divisors(42)={1,2,3,6,7,14,21,42}: a(42)=#{k^2: 1<=k<=9}=9:
  2^2 = 3+1,
  3^2 = 7+2 = 6+3 = 6+2+1,
  4^2 = 14+2 = 7+6+3 = 7+6+2+1,
  5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,
  6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,
  7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,
  8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,
  9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = Divisors[n], sum, sq, x}, sum = Plus @@ d; sq = Range[Floor[Sqrt[sum]]]^2; Count[CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sq]], ?(# > 0&)]]; Array[a, 100] (* _Amiram Eldar, Apr 16 2025 *)

Formula

a(n) <= A078705(n).
a(A173494(n)) = 1.

A281501 Number of partitions of n^3 into distinct parts.

Original entry on oeis.org

1, 1, 6, 192, 16444, 3207086, 1258238720, 916112394270, 1168225267521350, 2496696209705056142, 8635565795744155161506, 46977052491046305327286932, 392416122247953159916295467008, 4931628582570689013431218105121792, 91603865924570978521516549662581412000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2017

Keywords

Examples

			a(2) = 6 because we have [8], [7, 1], [6, 2], [5, 3], [5, 2, 1] and [4, 3, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsQ[n^3], {n, 0, 10}]

Formula

a(n) = [x^(n^3)] Product_{k>=1} (1 + x^k).
a(n) = A000009(A000578(n)).
a(n) ~ exp(Pi*n^(3/2)/sqrt(3))/(4*3^(1/4)*n^(9/4)).
Showing 1-7 of 7 results.