cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A128626 A triangular array distributing the values of sequence A072213 (cf. A115994).

Original entry on oeis.org

1, 4, 1, 9, 20, 1, 16, 140, 74, 1, 25, 572, 1136, 224, 1, 36, 1785, 8866, 6685, 604, 1, 49, 4600, 47152, 88380, 31851, 1492, 1, 64, 10416, 194282, 737059, 665542, 130808, 3458, 1, 81, 21320, 665769, 4512584, 8211274, 4105870, 479826, 7602, 1, 100, 40425
Offset: 0

Views

Author

Alford Arnold, Mar 15 2007

Keywords

Examples

			A115994 distributes the numeric partition sequence A000041 and A072213 records partition values for sequence A000290 (the squares).
Therefore the table begins:
   1;
   4,    1;
   9,   20,     1;
  16,  140,    74,     1;
  25,  572,  1136,   224,     1;
  36, 1785,  8866,  6685,   604,    1;
  49, 4600, 47152, 88380, 31851, 1492, 1;
  ...
		

Crossrefs

Programs

  • Maple
    nn:=8: g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..nn): gser:=series(g, q=0, nn^2+1): for n from 1 to nn do P[n]:=coeff(gser, q^(n^2)) od: for n from 1 to nn do seq(coeff(P[n], t^j), j=1..n); od; # Nathaniel Johnston, Apr 30 2011

A072243 Number of distinct partitions of n^2.

Original entry on oeis.org

1, 1, 2, 8, 32, 142, 668, 3264, 16444, 84756, 444793, 2368800, 12769602, 69545358, 382075868, 2114965120, 11784471548, 66043042088, 372022512608, 2105220502772, 11962163400706, 68223286792200, 390406746862530, 2240962117491470, 12899456450932840
Offset: 0

Views

Author

Robert G. Wilson v, Jul 06 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 22 2017
  • Mathematica
    Table[ PartitionsQ[n^2], {n, 1, 24}]

Formula

a(n) ~ exp(Pi*n/sqrt(3)) / (4*3^(1/4)*n^(3/2)). - Vaclav Kotesovec, Dec 01 2015
a(n) = A000009(A000290(n)). - Alois P. Heinz, Jan 22 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 22 2017

A238640 Position of [n, n, ..., n] (n n's) in Mathematica-ordered list of partitions of n^2.

Original entry on oeis.org

1, 1, 3, 19, 168, 1582, 15546, 157051, 1625368, 17159223, 184277224, 2008388660, 22172275440, 247558926150, 2791793968821, 31764451979736, 364283594455091, 4207485803818522, 48908343969469479, 571811846280602486, 6720473048598172508, 79363083519870386700
Offset: 0

Views

Author

Clark Kimberling, Mar 04 2014

Keywords

Examples

			The partitions of 4 in Mathematica order are 4, 31, 22, 211, 1111.  The position of 22 is a(2) = 3.
		

Crossrefs

Cf. A000290, A072213, A080577 (Mathematica ordering), A238638, A238639, A330661, A332706.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> 1 +add(b(n^2-j, j), j=n+1..n^2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 03 2014
  • Mathematica
    r[n_] := Table[n, {k, 1, n}]; Flatten[Table[Position[IntegerPartitions[n^2], r[n]], {n, 0, 8}]]
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1]+If[i>n, 0, b[n-i, i]]]]; a[n_] := 1+Sum[b[n^2-j, j], {j, n+1, n^2}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)

Extensions

a(9)-a(21) from Alois P. Heinz, Sep 03 2014

A284594 Numbers whose square has a prime number of partitions.

Original entry on oeis.org

2, 6, 29, 36, 2480, 14881
Offset: 1

Views

Author

Serge Batalov, Mar 29 2017

Keywords

Comments

Because asymptotically A072213(n) = A000041(n^2) ~ exp(Pi*sqrt(2/3)*n) / (4*sqrt(3)*n^2), the sum of the prime probabilities ~ 1/log(A072213(n)) is diverging and there are no obvious restrictions on primality; therefore, this sequence may be conjectured to be infinite.
Curiously, both A000041(6^2) and A000041(6^4) are prime; in addition, A000041(6^3) and A000041(6^1) are prime, but for no other powers A000041(6^k) is known (or can be expected) to be prime.
a(7) > 649350.

Examples

			a(2) = 6 is in the sequence because A000041(6^2) = 17977 is a prime.
		

Crossrefs

Programs

  • PARI
    for(n=1,2500,if(ispseudoprime(numbpart(n^2)),print1(n,", ")))

A285086 Numbers n such that the number of partitions of n^2+1 (=A000041(n^2+1)) is prime.

Original entry on oeis.org

1, 2, 3914
Offset: 1

Views

Author

Serge Batalov, Apr 09 2017

Keywords

Comments

Because asymptotically A000041(n^2+1) ~ exp(Pi*sqrt(2/3*(n^2+1))) / (4*sqrt(3)*(n^2+1)), the sum of the prime probabilities ~ 1/log(A000041(n^2+1)) is diverging and there are no obvious restrictions on primality; therefore, this sequence may be conjectured to be infinite.
a(4) > 90000.

Examples

			a(2) = 2 is in the sequence because A000041(2^2+1) = 7 is a prime.
		

Crossrefs

Programs

  • PARI
    for(n=1,3920,if(ispseudoprime(numbpart(n^2+1)),print1(n,", ")))

A285087 Numbers n such that the number of partitions of n^2-1 is prime.

Original entry on oeis.org

2, 13, 21, 46909
Offset: 1

Views

Author

Serge Batalov, Apr 09 2017

Keywords

Comments

Because asymptotically A000041(n^2-1) ~ exp(Pi*sqrt(2/3*(n^2-1))) / (4*sqrt(3)*(n^2-1)), the sum of the prime probabilities ~1/log(A000041(n^2-1)) is diverging and there are no obvious restrictions on primality; therefore, this sequence may be conjectured to be infinite.
a(5) > 50000.

Examples

			13 is in the sequence because A000041(13^2-1) = 228204732751 is a prime.
		

Crossrefs

Programs

  • PARI
    for(n=1,2000,if(ispseudoprime(numbpart(n^2-1)),print1(n,", ")))
    
  • Python
    from itertools import count, islice
    from sympy import isprime, npartitions
    def A285087_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: isprime(npartitions(n**2-1)), count(max(startvalue,1)))
    A285087_list = list(islice(A285087_gen(),3)) # Chai Wah Wu, Nov 20 2023

Formula

{n: A000041(n^2-1) in A000040}.

A285088 Numbers n such that the number of partitions of n(n+1)/2 (=A000041(A000217(n))) is prime.

Original entry on oeis.org

2, 3, 8, 3947, 43968, 61681
Offset: 1

Views

Author

Serge Batalov, Apr 09 2017

Keywords

Comments

Because asymptotically A000041(n*(n+1)/2) ~ exp(Pi*sqrt(2/3*(n*(n+1)/2))) / (4*sqrt(3)*(n*(n+1)/2)), the sum of the prime probabilities ~1/log(A000041(n*(n+1)/2)) is diverging and there are no obvious restrictions on primality; therefore, this sequence may be conjectured to be infinite.

Examples

			a(3) = 8 is in the sequence because A000041(8*9/2) = 17977 is a prime.
		

Crossrefs

Programs

  • PARI
    for(n=1,2000,if(ispseudoprime(numbpart(n*(n+1)/2)),print1(n,", ")))

A347466 Number of factorizations of n^2.

Original entry on oeis.org

1, 2, 2, 5, 2, 9, 2, 11, 5, 9, 2, 29, 2, 9, 9, 22, 2, 29, 2, 29, 9, 9, 2, 77, 5, 9, 11, 29, 2, 66, 2, 42, 9, 9, 9, 109, 2, 9, 9, 77, 2, 66, 2, 29, 29, 9, 2, 181, 5, 29, 9, 29, 2, 77, 9, 77, 9, 9, 2, 269, 2, 9, 29, 77, 9, 66, 2, 29, 9, 66, 2, 323, 2, 9, 29, 29
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(1) = 1 through a(8) = 11 factorizations:
  ()  (4)    (9)    (16)       (25)   (36)       (49)   (64)
      (2*2)  (3*3)  (2*8)      (5*5)  (4*9)      (7*7)  (8*8)
                    (4*4)             (6*6)             (2*32)
                    (2*2*4)           (2*18)            (4*16)
                    (2*2*2*2)         (3*12)            (2*4*8)
                                      (2*2*9)           (4*4*4)
                                      (2*3*6)           (2*2*16)
                                      (3*3*4)           (2*2*2*8)
                                      (2*2*3*3)         (2*2*4*4)
                                                        (2*2*2*2*4)
                                                        (2*2*2*2*2*2)
		

Crossrefs

Positions of 2's are the primes (A000040), which have squares A001248.
The restriction to powers of 2 is A058696.
The additive version (partitions) is A072213.
The case of integer alternating product is A347459, nonsquared A347439.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347050 = factorizations with alternating permutation, complement A347706.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n>k, 0, 1)+`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= proc(n) option remember; b((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
          sort(map(i-> i[2], ifactors(n^2)[2]), `>`))$2)
        end:
    seq(a(n), n=1..76);  # Alois P. Heinz, Oct 14 2021
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n^2]],{n,25}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A347466(n) = A001055(n^2); \\ Antti Karttunen, Oct 13 2021

Formula

a(n) = A001055(A000290(n)).

A128854 Number of partitions of n^3.

Original entry on oeis.org

1, 1, 22, 3010, 1741630, 3163127352, 15285151248481, 175943559810422753, 4453575699570940947378, 233202632378520643600875145, 24061467864032622473692149727991, 4700541557913558825461268913956492487
Offset: 0

Views

Author

Zerinvary Lajos, Apr 16 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[n^3],{n,0,11}] (* James C. McMahon, Jan 12 2025 *)
  • MuPAD
    combinat::partitions::count(n^3) $n=0..15
    
  • PARI
    a(n) = numbpart(n^3); \\ Michel Marcus, Jul 12 2023

Formula

a(n) = A000041(A000578(n)). - Michel Marcus, Aug 15 2013
a(n) ~ exp(Pi*sqrt(2/3)*n^(3/2))/(4*sqrt(3)*n^3). - Ilya Gutkovskiy, Jan 13 2017

A093115 Number of partitions of n^2 into squares not greater than n.

Original entry on oeis.org

1, 1, 1, 1, 5, 7, 10, 13, 17, 108, 159, 228, 317, 430, 572, 748, 5753, 8125, 11266, 15376, 20672, 27430, 35942, 46575, 59717, 523905, 708028, 946875, 1253880, 1645224, 2140099, 2761318, 3535658, 4494602, 5674753, 7118724, 69766770, 90940578, 117756370
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2004

Keywords

Examples

			n=6: 6^2 = 9*2^2 = 8*2^2+4*1^2 = 7*2^2+8*1^2 = 6*2^2+12*1^2 = 5*2^2+16*1^2 = 4*2^2+20*1^2 = 3*2^2+24*1^2 = 2*2^2+28*1^2 = 1*2^2+32*1^2 = 36*1^2, therefore a(6)=10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= proc(n) local r; r:= isqrt(n);
          b(n^2, r-`if`(r^2>n, 1, 0))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n-i^2, i]]]]; a[n_] := (r = Sqrt[n] // Floor; b[n^2, r - If[r^2 > n, 1, 0]]); Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)

Formula

Coefficient of x^(n^2) in the series expansion of Product_{k=1..floor(sqrt(n))} 1/(1 - x^(k^2)). - Vladeta Jovovic, Mar 24 2004

Extensions

More terms from Vladeta Jovovic, Mar 24 2004
Corrected a(0) by Alois P. Heinz, Apr 15 2013
Showing 1-10 of 24 results. Next