cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281541 Expansion of Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) / Product_{j>=1} (1 - x^(j^2)).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 15, 19, 23, 27, 34, 41, 47, 53, 64, 75, 86, 96, 113, 129, 145, 159, 182, 206, 229, 252, 284, 318, 349, 380, 423, 468, 513, 555, 616, 676, 736, 791, 869, 949, 1026, 1103, 1202, 1310, 1408, 1506, 1631, 1766, 1896, 2020, 2185, 2354, 2525, 2680, 2882, 3094, 3305, 3506, 3751, 4023, 4281, 4537
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 23 2017

Keywords

Comments

Total number of parts in all partitions of n into squares.
Convolution of A001156 and A046951.

Examples

			a(8) = 15 because we have [4, 4], [4, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1] and 2 + 5 + 8 = 15.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], (s->
          `if`(s>n, 0, (p->p+[0, p[1]])(b(n-s, i))))(i^2)+b(n, i-1))
        end:
    a:= n-> b(n, isqrt(n))[2]:
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 19 2018
  • Mathematica
    nmax = 63; Rest[CoefficientList[Series[Sum[x^i^2/(1 - x^i^2), {i, 1, nmax}]/Product[1 - x^j^2, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) / Product_{j>=1} (1 - x^(j^2)).
a(n) = Sum_{k=1..n} k * A243148(n,k). - Alois P. Heinz, Sep 19 2018
a(n) ~ exp(3 * 2^(-4/3) * zeta(3/2)^(2/3) * (Pi*n)^(1/3)) * sqrt(Pi/3) / (12*sqrt(n)). - Vaclav Kotesovec, Sep 15 2021