cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281544 Expansion of Sum_{k>=2} x^prime(k)/(1 - x^prime(k)) / Product_{k>=2} (1 - x^prime(k)).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 2, 3, 4, 4, 6, 7, 8, 11, 12, 15, 18, 20, 26, 29, 34, 40, 46, 54, 62, 71, 82, 94, 106, 122, 138, 157, 178, 201, 226, 254, 286, 321, 360, 402, 448, 501, 558, 619, 690, 764, 846, 938, 1036, 1145, 1264, 1392, 1532, 1687, 1854, 2036, 2234, 2448, 2680, 2934, 3210, 3507, 3828, 4178, 4554, 4961, 5404
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 23 2017

Keywords

Comments

Total number of parts in all partitions of n into odd primes.
Convolution of A005087 and A099773.

Examples

			a(14) = 8 because we have [11, 3], [7, 7], [5, 3, 3, 3] and 2 + 2 + 4 = 8.
		

Crossrefs

Programs

  • Mathematica
    nmax = 68; Rest[CoefficientList[Series[Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}]/Product[1 - x^Prime[k], {k, 2, nmax}], {x, 0, nmax}], x]]
  • PARI
    sumparts(n, pred)={sum(k=1, n, 1/(1-pred(k)*x^k) - 1 + O(x*x^n))/prod(k=1, n, 1-pred(k)*x^k + O(x*x^n))}
    {my(n=60); Vec(sumparts(n, v->v>2 && isprime(v)), -n)} \\ Andrew Howroyd, Dec 28 2017

Formula

G.f.: Sum_{k>=2} x^prime(k)/(1 - x^prime(k)) / Product_{k>=2} (1 - x^prime(k)).