cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281592 Products of three distinct primes p1, p2 and p3 (sphenic numbers) with p1

Original entry on oeis.org

138, 777, 4642, 10258, 10263, 12207, 13282, 16167, 19762, 30783, 37407, 38482, 46978, 48927, 56127, 60145, 63543, 73767, 81687, 89823, 95367, 95627, 103863, 110905, 115527, 128545, 202705, 208879, 223643, 284119, 324947, 325793, 360151, 395003, 477538, 541163, 558322, 585538, 672199, 673693, 780082, 914551, 1016643
Offset: 1

Views

Author

Peter Weiss, Apr 14 2017

Keywords

Examples

			10258 is in the sequence because 10258 = 2*23*223 and 223 is the concatenation of 2 with 23.
		

Crossrefs

Cf. A007304, A133980 (the p3 primes).

Programs

  • Mathematica
    c[x_, y_] := x 10^IntegerLength[y] + y; upto[mx_] := Sort@ Reap[Block[{p=2, q=3, v=1}, While[v <= mx, While[p < q && (v = p q (r = c[p, q])) <= mx, If[PrimeQ@r, Sow@v]; p = NextPrime[p]]; p=2; q = NextPrime[q]; v = p q c[p, q]]]][[2, 1]]; upto[10^6] (* Giovanni Resta, Apr 14 2017 *)
  • PARI
    isok(n) = f = factor(n); ((#f~ == 3) && (vecmax(f[,2]) == 1) && (f[3,1] == fromdigits(concat(digits(f[1,1]), digits(f[2,1]))))); \\ Michel Marcus, Apr 14 2017