cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281617 Expansion of Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 3, 0, 5, 2, 6, 3, 9, 3, 14, 7, 16, 10, 23, 12, 32, 20, 37, 28, 52, 35, 69, 49, 80, 68, 110, 83, 137, 112, 166, 150, 215, 178, 268, 239, 324, 303, 406, 365, 504, 472, 604, 584, 747, 708, 917, 888, 1089, 1085, 1337, 1311, 1618, 1606, 1916, 1954, 2332, 2334, 2782, 2829, 3300, 3407, 3963
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of parts in all partitions of n into semiprimes (A001358).
Convolution of A086971 and A101048.

Examples

			a(12) = 5 because we have [6, 6], [4, 4, 4] and 2 + 3 = 5.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0$2],
         `if`(i>n, 0, (p-> p+[0, p[1]])(b(n-i, h(min(n-i, i)))))+b(n, h(i-1))))
        end:
    a:= n-> b(n, h(n))[2]:
    seq(a(n), n=0..70);  # Alois P. Heinz, May 19 2021
  • Mathematica
    nmax = 70; Rest[CoefficientList[Series[Sum[Floor[PrimeOmega[i]/2] Floor[2/PrimeOmega[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - Floor[PrimeOmega[j]/2] Floor[2/PrimeOmega[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).
a(n) = Sum_{k>0} k * A344447(n,k). - Alois P. Heinz, May 19 2021