A281661 The least common multiple of 1 + n^2 and 1 + n^3.
1, 2, 45, 140, 1105, 1638, 8029, 8600, 33345, 29930, 101101, 81252, 250705, 186830, 540765, 381488, 1052929, 712530, 1895725, 1241660, 3208401, 2046902, 5164765, 3224520, 7977025, 4890938, 11899629, 7184660, 17233105, 10268190, 24327901, 14329952, 33588225, 19586210
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-15,0,20,0,-15,0,6,0,-1).
Programs
-
Maple
A281661 := proc(n) ilcm(1+n^2,1+n^3); end proc:
-
Mathematica
Table[LCM[n^2+1,n^3+1],{n,0,50}] (* Harvey P. Dale, Jun 10 2023 *)
-
PARI
a(n) = lcm(n^2+1, n^3+1); \\ Michel Marcus, Jan 29 2017
-
PARI
a(n) = (n^2 + 1)*(n^3 + 1)/(1 + n%2); \\ Altug Alkan, Jan 29 2017
Formula
a(n) = lcm(1+n^2, 1+n^3) = (1+n^2)*(1+n^3)/gcd(1+n^2, 1+n^3).
a(n) = (1+n^2)*(1+n^3)/ A000034(n) with g.f. ( 1 +2*x +39*x^2 +128*x^3 +850*x^4 +828*x^5 +2054*x^6 +832*x^7 +861*x^8 +130*x^9 +35*x^10 ) / ( (x-1)^6 *(1+x)^6 ).
a(n) = (3 + (-1)^n)*(1 + n^2 + n^3 + n^5)/4. - Colin Barker, Feb 07 2017
Comments