cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281661 The least common multiple of 1 + n^2 and 1 + n^3.

Original entry on oeis.org

1, 2, 45, 140, 1105, 1638, 8029, 8600, 33345, 29930, 101101, 81252, 250705, 186830, 540765, 381488, 1052929, 712530, 1895725, 1241660, 3208401, 2046902, 5164765, 3224520, 7977025, 4890938, 11899629, 7184660, 17233105, 10268190, 24327901, 14329952, 33588225, 19586210
Offset: 0

Views

Author

R. J. Mathar, Jan 26 2017

Keywords

Comments

If d|(1 + n^2) and d|(1 + n^3), then d|((1 + n^2) - (n*(1 + n^2) - (1 + n^3))^2) = 2*n. If k|n and k|(1 + n^2), then k = 1 is only option since k|n^2 and k|(1 + n^2). So d must be 1 or 2, exactly. Obviously if n is odd, then the greatest d must be 2 since 1 + n^2 and 1 + n^3 are even. If n is even, then d must be 1 since 1 + n^2 and 1 + n^3 are odd.

Crossrefs

Programs

  • Maple
    A281661 := proc(n)
            ilcm(1+n^2,1+n^3);
    end proc:
  • Mathematica
    Table[LCM[n^2+1,n^3+1],{n,0,50}] (* Harvey P. Dale, Jun 10 2023 *)
  • PARI
    a(n) = lcm(n^2+1, n^3+1); \\ Michel Marcus, Jan 29 2017
    
  • PARI
    a(n) = (n^2 + 1)*(n^3 + 1)/(1 + n%2); \\ Altug Alkan, Jan 29 2017

Formula

a(n) = lcm(1+n^2, 1+n^3) = (1+n^2)*(1+n^3)/gcd(1+n^2, 1+n^3).
a(n) = (1+n^2)*(1+n^3)/ A000034(n) with g.f. ( 1 +2*x +39*x^2 +128*x^3 +850*x^4 +828*x^5 +2054*x^6 +832*x^7 +861*x^8 +130*x^9 +35*x^10 ) / ( (x-1)^6 *(1+x)^6 ).
A006530(a(n)) = max( A081256(n), A014442(n)). - R. J. Mathar, Jan 28 2017
a(n) = (3 + (-1)^n)*(1 + n^2 + n^3 + n^5)/4. - Colin Barker, Feb 07 2017