cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281665 Numbers m such that A006667(m)/A006577(m) = 1/3.

Original entry on oeis.org

159, 283, 377, 502, 503, 603, 615, 668, 669, 670, 799, 807, 888, 890, 892, 893, 1063, 1065, 1095, 1186, 1187, 1188, 1189, 1190, 1417, 1435, 1580, 1581, 1582, 1585, 1586, 1587, 1889, 1913, 1947, 1959, 1963, 2104, 2106, 2108, 2109, 2113, 2114, 2115, 2119, 2518
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2017

Keywords

Comments

A006667: number of tripling steps to reach 1 in '3x+1' problem.
A006577: number of halving and tripling steps to reach 1 in '3x+1' problem.
The corresponding number of iterations A006577(a(n)) is given by the sequence 54, 60, 63, 66, 66, 69, 69, 69, 69, 69, 72, 72, 72, 72, 72, 72, 75, 75, ... and the set of the distinct values of this sequence is {b(n)} = {54, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, ...}. We observe that {b(k)} = {54} union {60 + 3*k} for k = 1, 2, ...

Examples

			159 is in the sequence because A006667(159)/A006577(159) = 18/54 = 1/3.
		

Crossrefs

Programs

  • Maple
    nn:=10000:
    for n from 2 to 3000 do:
      m:=n:s1:=0:s2:=0:
       for i from 1 to nn while(m<>1) do:
        if irem(m,2)=0
         then
         s2:=s2+1:m:=m/2:
         else
         s1:=s1+1:m:=3*m+1:
        fi:
       od:
       s:=s1/(s1+s2):
        if s=1/3
         then
         printf(`%d, `,n):
         else
        fi:
    od: