cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281689 Expansion of Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).

Original entry on oeis.org

1, 3, 6, 11, 18, 29, 42, 62, 86, 119, 159, 211, 273, 352, 446, 562, 697, 864, 1054, 1284, 1550, 1860, 2220, 2639, 3114, 3669, 4293, 5011, 5823, 6745, 7783, 8956, 10268, 11747, 13390, 15237, 17281, 19561, 22089, 24889, 27979, 31405, 35157, 39309, 43856, 48849, 54319, 60309, 66840, 73992, 81760, 90243
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 27 2017

Keywords

Comments

Total number of parts in all partitions of n into Fibonacci parts (with a single type of 1).
Convolution of A003107 and A005086.

Examples

			a(5) = 18 because we have [5], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 2 + 3 + 3 + 4 + 5 = 18.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
          issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
           b(n, h(i-1))+(p->p+[0, p[1]])(b(n-i, h(min(n-i, i)))))
        end:
    a:= n-> b(n, h(n))[2]:
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    Rest[CoefficientList[Series[Sum[x^Fibonacci[k]/(1 - x^Fibonacci[k]), {k, 2, 20}]/Product[1 - x^Fibonacci[k], {k, 2, 20}], {x, 0, 52}], x]]

Formula

G.f.: Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).
a(n) = Sum_{k=1..n} k * A319394(n,k). - Alois P. Heinz, Sep 18 2018