cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281791 Ways to tile a 5 X (2n+1) floor with tatami mats, including one monomer.

Original entry on oeis.org

3, 18, 10, 8, 18, 24, 32, 52, 68, 100, 142, 196, 280, 388, 542, 756, 1046, 1452, 2006, 2768, 3816, 5248, 7212, 9896, 13562, 18568, 25392, 34692, 47354, 64580, 88002, 119824, 163034, 221672, 301200, 409004, 555060, 752844, 1020550, 1382732, 1872520, 2534596, 3429206, 4637556, 6269070
Offset: 0

Views

Author

Yasutoshi Kohmoto, Jan 30 2017

Keywords

Comments

Apart from a single 1 X 1 monomer, the area is tiled with 2 X 1 mats. No four mats are permitted to meet at a point.

Examples

			For n=0, the 5X1 floor allows the monomer to be placed at one of the two ends or in the middle: a(n=0)=3.
		

Crossrefs

Cf. A271786 [3X(2n+1) floor]. 2nd column of A272474.

Programs

  • PARI
    s1(n)=my(s); forstep(k=(n%4!=1),(n-1)\6,2, s+=((n+3)/4-k/2)*((n-1)/4-k/2)!/(k!*((n-1)/4-3*k/2)!)); 2*s
    s3(n)=my(s); forstep(k=(n%4==1),(n-3)\6,2, s+=((n-3)/4-k/2)!/(k!*((n-3)/4-3*k/2)!)); 2*s
    s5(n)=my(s); forstep(k=(n%4!=1),(n-5)\6,2, s+=((n+7)/4-k/2)*((n-5)/4-k/2)!/(k!*((n-5)/4-3*k/2)!)); 2*s
    a(n)=s1(n) + s3(n) + s5(n) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = S_1(2n+1) + S_5(2n+1) + S_3(2n+1) for n>1 where
S_1(n) = 2* Sum_{k= 0<=k<=[(n-1)/6]} ((n+3)/4-1/2*k) *((n-1)/4-1/2*k)!/(k!*((n-1)/4-3/2*k)!). The sum is over even k if n==1 (mod 4), else over odd k.
S_5(n) = 2* Sum_{0<=k<=[(n-5)/6]} ((n+7)/4-1/2*k) *((n-5)/4-1/2*k)!/(k!*((n-5)/4-3/2*k)!). The sum is over even k if n==1 (mod 4) else over odd k.
S_3(n) = 2* Sum_{0<=k<=[(n-3)/6]} 2*((n-3)/4-1/2*k)!/(k!*((n-3)/4-3/2*k)!). The sum is over odd k if n==1 (mod 4), else over even k.
Where [m] is floor(m).
G.f. x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. (Includes zeros for even floor widths).- R. J. Mathar, Apr 10 2017
a(n) = 2*(A228577(n-1)+A228577(n+1))+4*(A182097(n-2)+A182097(n-1)), n>1. - R. J. Mathar, Apr 10 2017