A281874 Number of Dyck paths of semilength n with distinct peak heights.
1, 1, 1, 3, 5, 13, 31, 71, 181, 447, 1111, 2799, 7083, 17939, 45563, 115997, 295827, 755275, 1929917, 4935701, 12631111, 32340473, 82837041, 212248769, 543978897, 1394481417, 3575356033, 9168277483, 23512924909, 60306860253, 154689354527, 396809130463
Offset: 0
Keywords
Examples
a(3)=3 counts UUUDDD, UDUUDD, UUDDUD because the first has only one peak and the last two have peak heights 1,2 and 2,1 respectively.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 19.
Crossrefs
Programs
-
Mathematica
a[n_, k_] /; k == n := 1; a[n_, k_] /; (k > n || k < 1) := 0; a[n_, k_] := a[n, k] = Sum[(Binomial[k - 1, i - 1] + i Binomial[k - 1, i - 2]) a[n - k, i], {i, k + 1}]; Table[a[n, 1], {n, 28}]
Comments