A281915 4th power analog of Keith numbers.
1, 7, 19, 20, 22, 25, 28, 36, 77, 107, 110, 175, 789, 1528, 1932, 3778, 5200, 7043, 8077, 38855, 41234, 44884, 49468, 204386, 763283, 9423515, 73628992, 87146144, 146124072, 146293356, 326194628, 1262293219, 1321594778, 2767787511, 11511913540, 12481298961, 13639550655
Offset: 1
Examples
175^4 = 937890625: 9 + 3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 = 49; 3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 = 89; 7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 + 89 = 175.
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); for n from 1 to q do b:=n^w; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[ ] is defined in A007629 *) a281915[n_] := Join[{1, 7}, Select[Range[10, n], keithQ[#, 4]&]] a281915[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
Extensions
a(27)-a(28) from Jinyuan Wang, Jan 30 2020
Missing a(25) and a(29)-a(37) from Giovanni Resta, Jan 31 2020
Comments