A281916 5th power analog of Keith numbers.
1, 28, 35, 36, 46, 51, 99, 109, 191, 239, 476, 491, 1022, 1126, 1358, 1362, 15156, 21581, 44270, 63377, 100164, 375830, 388148, 2749998, 5215505, 10158487, 81082532, 87643314, 410989134, 1485204944, 3496111364, 3829840893, 15889549579, 16107462404, 16766005098, 17608009898
Offset: 1
Examples
109^5 = 15386239549: 1 + 5 + 3 + 8 + 6 + 2 + 3 + 9 + 5 + 4 + 9 = 55; 5 + 3 + 8 + 6 + 2 + 3 + 9 + 5 + 4 + 9 + 55 = 109.
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); for n from 1 to q do b:=n^w; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[ ] is defined in A007629 *) a281916[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 5]&]] a281916[5*10^5] (* Hartmut F. W. Hoft, Jun 03 2021 *)
Extensions
a(27)-a(28) from Jinyuan Wang, Jan 31 2020
a(29)-a(36) from Giovanni Resta, Jan 31 2020
Comments