A281917 6th power analog of Keith numbers.
1, 18, 45, 54, 64, 125, 218, 246, 935, 1125, 6021, 6866, 7887, 40210, 89330, 457625, 577655, 613385, 640118, 5200210, 6809148, 7293243, 10013591, 50980917, 216864574, 885859983, 4556794863, 4939169289, 8580755055, 8672110451, 18562634876, 18992278338, 36013476739
Offset: 1
Examples
125^6 = 3814697265625: 3 + 8 + 1 + 4 + 6 + 9 + 7 + 2 + 6 + 5 + 6 + 2 + 5 = 64; 8 + 1 + 4 + 6 + 9 + 7 + 2 + 6 + 5 + 6 + 2 + 5 + 64 = 125.
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); for n from 1 to q do b:=n^w; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[n_, e_] is defined in A007629 *) a281917[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 6]&]] a281917[10^4] (* Hartmut F. W. Hoft, Jun 03 2021 *)
Extensions
a(24) from Jinyuan Wang, Jan 31 2020
a(25)-a(33) from Giovanni Resta, Jan 31 2020
Comments