A281921 10th-power analog of Keith numbers.
1, 82, 85, 94, 97, 106, 117, 459, 1197, 24615, 24657, 26184, 87664, 117099, 538168, 1049708, 1229174, 2210323, 4587773, 11019224, 96167938, 104719358, 202511251, 226456915, 821871524, 1811437987, 1832881095, 3530066559, 7414362499, 7906250753, 15607432165, 15631766564
Offset: 1
Examples
106^10 = 179084769654285362176: 1 + 7 + 9 + 0 + 8 + 4 + 7 + 6 + 9 + 6 + 5 + 4 + 2 + 8 + 5 + 3 + 6 + 2 + 1 + 7 + 6 = 106.
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); for n from 1 to q do b:=n^w; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[ ] is defined in A007629 *) a281921[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 10]&]] a281921[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
Extensions
a(21) from Jinyuan Wang, Feb 02 2020
a(22)-a(32) from Giovanni Resta, Feb 03 2020
Comments