A281944 Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with n colors such that exactly two balls are of a color seen previously in the sequence.
1, 2, 14, 3, 42, 150, 4, 84, 600, 1560, 5, 140, 1500, 7800, 16800, 6, 210, 3000, 23400, 100800, 191520, 7, 294, 5250, 54600, 352800, 1340640, 2328480, 8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000, 9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400, 10, 630, 18000, 327600, 4233600, 40219200, 279417600, 1360800000, 4191264000, 6187104000
Offset: 1
Examples
n=1 => AAA -> T(1,3)=1 n=2 => AAA,BBB -> T(2,3)=2 AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=14 Triangle starts: 1 2, 14 3, 42, 150 4, 84, 600, 1560 5, 140, 1500, 7800, 16800 6, 210, 3000, 23400, 100800, 191520 7, 294, 5250, 54600, 352800, 1340640, 2328480 8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000 9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400
Links
- Jeremy Dover, Table of n, a(n) for n = 1..1035
- Jeremy Dover, Answer to Cumulative Distribution Function of Collision Counts
Crossrefs
Programs
-
Mathematica
Table[(Binomial[k, 3] + 3 Binomial[k, 4]) n!/(n + 2 - k)!, {n, 12}, {k, 3, n + 2}] // Flatten (* Michael De Vlieger, Feb 05 2017 *)
-
PARI
T(n, k) = (binomial(k,3) + 3*binomial(k,4)) * n! / (n+2-k)!; tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Feb 04 2017
Formula
T(n, k) = (binomial(k,3) + 3*binomial(k,4)) * n! / (n+2-k)!.
T(n, k) = n*T(n-1,k-1) + (k-2)*A281881(n,k-1).