A282010 Number of ways to partition Turan graph T(2n,n) into connected components.
1, 1, 12, 163, 3411, 97164, 3576001, 163701521, 9064712524, 594288068019, 45352945127123, 3973596101084108, 395147058261233761, 44170986458602383553, 5504694207040057913164, 759355292729159336345955, 115228949414563130433140659, 19129024114529146183236435660
Offset: 0
Examples
For n=1, Turan graph T(2,1) (2-empty graph) shall be partitioned into two singleton subgraphs (1 way), a(1)=1. For n=2, Turan graph T(4,2) (square graph) shall be partitioned into: the same square graph (1 way) or one singleton + one 3-path subgraphs (4 ways) or two singleton + one 2-path subgraphs (4 ways) or two 2-path subgraphs (2 ways) or four singleton subgraphs (1 way), a(2)=12.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..100
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Turan Graph
Programs
-
Maple
A282010 := proc(n) add((-1)^(n-j)*combinat[bell](2*j)*binomial(n,j),j=0..n) ; end proc: seq(A282010(n),n=0..20) ; # R. J. Mathar, Jun 27 2024
-
Mathematica
a[n_]:=BellB[2n];Table[Sum[((-1)^(n-j))*a[j]*Binomial[n,j],{j,0,n}],{n,0,17}] (* Indranil Ghosh, Feb 25 2017 *)
-
PARI
bell(n) = polcoeff( sum( k=0, n, prod(i=1, k, x/(1 - i*x)), x^n * O(x)), n) a(n) = sum(j=0, n, ((-1)^(n-j))*bell(2*j)*binomial(n,j)); \\ Michel Marcus, Feb 05 2017
Formula
Extensions
More terms from Michel Marcus, Feb 05 2017
Comments