A282033 An example of a collection of five sets (based on U.S. coinage) which is not an additive number system.
1, 2, 3, 4, 5, 10, 20, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Michael Maltenfort, Characterizing Additive Systems, The American Mathematical Monthly 124.2 (2017): 132-148. See Fig. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
LinearRecurrence[{2,-1},{1,2,3,4,5,10,20,25,50,75,100,200,300,400},50] (* or *) CoefficientList[Series[x (1+4x^5+5x^6-5x^7+ 20x^8+ 75x^11)/ (1-x)^2, {x,0,50}],x] (* Harvey P. Dale, Aug 04 2021 *)
-
PARI
Vec(x*(1 + 4*x^5 + 5*x^6 - 5*x^7 + 20*x^8 + 75*x^11) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Apr 16 2020
Formula
From Colin Barker, Apr 16 2020: (Start)
G.f.: x*(1 + 4*x^5 + 5*x^6 - 5*x^7 + 20*x^8 + 75*x^11) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>12.
(End)
Comments