A282077 Number of 9-element subsets of [n+9] having an even sum.
0, 5, 25, 110, 350, 1001, 2485, 5720, 12120, 24310, 46126, 83980, 146860, 248710, 408430, 653752, 1021240, 1562275, 2343055, 3453450, 5007002, 7153575, 10079355, 14024400, 19282640, 26225628, 35302540, 47071640, 62200280, 81505820, 105955628, 136719440
Offset: 0
Examples
a(1) = 5: {1,2,3,4,5,6,7,8,10}, {1,2,3,4,5,6,8,9,10}, {1,2,3,4,6,7,8,9,10}, {1,2,4,5,6,7,8,9,10}, {2,3,4,5,6,7,8,9,10}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-15,35,1,-65,45,45,-65,1,35,-15,-5,5,-1).
Crossrefs
Column k=9 of A282011.
Programs
-
Mathematica
LinearRecurrence[{5,-5,-15,35,1,-65,45,45,-65,1,35,-15,-5,5,-1},{0,5,25,110,350,1001,2485,5720,12120,24310,46126,83980,146860,248710,408430},40] (* Harvey P. Dale, Jun 10 2018 *)
-
PARI
concat(0, Vec(x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^10) + O(x^30))) \\ Colin Barker, Feb 06 2017
Formula
G.f.: x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^10).
a(n) = ((384 + 400*n + 140*n^2 + 20*n^3 + n^4)*(-945*(-1+(-1)^n) + 3378*n + 1900*n^2 + 460*n^3 + 50*n^4 + 2*n^5)) / 1451520. - Colin Barker, Feb 06 2017