A282078 Number of 10-element subsets of [n+10] having an even sum.
0, 5, 30, 140, 490, 1491, 3976, 9696, 21816, 46126, 92252, 176232, 323092, 571802, 980232, 1633984, 2655224, 4217499, 6560554, 10014004, 15021006, 22174581, 32253936, 46278336, 65560976, 91786604, 127089144, 174160784, 236361064, 317866884, 423822512
Offset: 0
Examples
a(1) = 5: {1,2,3,4,5,6,7,8,9,11}, {1,2,3,4,5,6,7,9,10,11}, {1,2,3,4,5,7,8,9,10,11}, {1,2,3,5,6,7,8,9,10,11}, {1,3,4,5,6,7,8,9,10,11}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1).
Crossrefs
Column k=10 of A282011.
Programs
-
PARI
concat(0, Vec(-x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^11) + O(x^30))) \\ Colin Barker, Feb 06 2017
Formula
G.f.: -x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^11).
a(n) = (-2735775*(-1+(-1)^n) - 45*(-344851 + 56595*(-1)^n)*n + (22908402-803250*(-1)^n)*n^2 - 50*(-325607+2079*(-1)^n)*n^3 + (6781885-4725*(-1)^n)*n^4 + 1802220*n^5 + 315546*n^6 + 36300*n^7 + 2640*n^8 + 110*n^9 + 2*n^10) / 14515200. - Colin Barker, Feb 06 2017