A282080 Number of n-element subsets of [n+4] having an even sum.
1, 2, 6, 19, 38, 60, 100, 170, 255, 350, 490, 693, 924, 1176, 1512, 1956, 2445, 2970, 3630, 4455, 5346, 6292, 7436, 8814, 10283, 11830, 13650, 15785, 18040, 20400, 23120, 26248, 29529, 32946, 36822, 41211, 45790, 50540, 55860, 61810, 67991, 74382, 81466, 89309
Offset: 0
Examples
a(2) = 6: {1,3}, {1,5}, {2,4}, {2,6}, {3,5}, {4,6}. a(3) = 19: {1,2,3}, {1,2,5}, {1,2,7}, {1,3,4}, {1,3,6}, {1,4,5}, {1,4,7}, {1,5,6}, {1,6,7}, {2,3,5}, {2,3,7}, {2,4,6}, {2,5,7}, {3,4,5}, {3,4,7}, {3,5,6}, {3,6,7}, {4,5,7}, {5,6,7}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-13,25,-38,46,-46,38,-25,13,-5,1).
Crossrefs
Cf. A282011.
Programs
-
Mathematica
CoefficientList[Series[-(x^2 - x + 1)*(x^4 - 2*x^3 + 6*x^2 - 2*x + 1)/((x^2 + 1)^3*(x - 1)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jan 01 2024 *)
-
PARI
Vec(-(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5) + O(x^90)) \\ Colin Barker, Feb 06 2017
Formula
G.f.: -(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5).
a(n) = A282011(n+4,n).
a(n) = (2*(1+n)*(2+n)*(3+n)*(4+n) + 3*(-i*(-i)^n*((3+8*i) + (4+6*i)*n + (1+i)*n^2) + i^n*((8+3*i) + (6+4*i)*n + (1+i)*n^2)))/96 where i=sqrt(-1). - Colin Barker, Feb 06 2017