cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282080 Number of n-element subsets of [n+4] having an even sum.

Original entry on oeis.org

1, 2, 6, 19, 38, 60, 100, 170, 255, 350, 490, 693, 924, 1176, 1512, 1956, 2445, 2970, 3630, 4455, 5346, 6292, 7436, 8814, 10283, 11830, 13650, 15785, 18040, 20400, 23120, 26248, 29529, 32946, 36822, 41211, 45790, 50540, 55860, 61810, 67991, 74382, 81466, 89309
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(2) = 6: {1,3}, {1,5}, {2,4}, {2,6}, {3,5}, {4,6}.
a(3) = 19: {1,2,3}, {1,2,5}, {1,2,7}, {1,3,4}, {1,3,6}, {1,4,5}, {1,4,7}, {1,5,6}, {1,6,7}, {2,3,5}, {2,3,7}, {2,4,6}, {2,5,7}, {3,4,5}, {3,4,7}, {3,5,6}, {3,6,7}, {4,5,7}, {5,6,7}.
		

Crossrefs

Cf. A282011.

Programs

  • Mathematica
    CoefficientList[Series[-(x^2 - x + 1)*(x^4 - 2*x^3 + 6*x^2 - 2*x + 1)/((x^2 + 1)^3*(x - 1)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jan 01 2024 *)
  • PARI
    Vec(-(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5) + O(x^90)) \\ Colin Barker, Feb 06 2017

Formula

G.f.: -(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5).
a(n) = A282011(n+4,n).
a(n) = (2*(1+n)*(2+n)*(3+n)*(4+n) + 3*(-i*(-i)^n*((3+8*i) + (4+6*i)*n + (1+i)*n^2) + i^n*((8+3*i) + (6+4*i)*n + (1+i)*n^2)))/96 where i=sqrt(-1). - Colin Barker, Feb 06 2017