A282081 Number of n-element subsets of [n+5] having an even sum.
1, 3, 9, 28, 66, 126, 226, 396, 651, 1001, 1491, 2184, 3108, 4284, 5796, 7752, 10197, 13167, 16797, 21252, 26598, 32890, 40326, 49140, 59423, 71253, 84903, 100688, 118728, 139128, 162248, 188496, 218025, 250971, 287793, 329004, 374794, 425334, 481194, 543004
Offset: 0
Examples
a(0) = 1: {}. a(1) = 3: {2}, {4}, {6}. a(2) = 9: {1,3}, {1,5}, {1,7}, {2,4}, {2,6}, {3,5}, {3,7}, {4,6}, {5,7}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-18,38,-63,84,-92,84,-63,38,-18,6,-1).
Crossrefs
Cf. A282011.
Programs
-
Mathematica
LinearRecurrence[{6,-18,38,-63,84,-92,84,-63,38,-18,6,-1},{1,3,9,28,66,126,226,396,651,1001,1491,2184},40] (* Harvey P. Dale, Sep 30 2019 *)
-
PARI
Vec((x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1) / ((x^2+1)^3*(x-1)^6) + O(x^60)) \\ Colin Barker, Feb 06 2017
Formula
G.f.: (x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^6).
a(n) = A282011(n+5,n).
a(n) = (1+n)*(2+n)*(3+n)*(4+n)*(5+n)/240 + ((-i)^n+i^n)*(8+6*n+n^2)/32 where i=sqrt(-1). - Colin Barker, Feb 06 2017