cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282163 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^3.

Original entry on oeis.org

1, 154836, 985320, 1108536, 1113959, 1492260, 1576696, 1632708, 1649238, 1684540, 1805570, 1988008, 2508792, 2548810, 2550408, 2659260, 2698740, 2746590, 2995122, 3074552, 3286710, 3330795, 3538458, 3574200, 3730155, 4039932, 4160240, 4318548, 4374370, 4426695, 4523985
Offset: 1

Views

Author

Lucian Craciun, Feb 07 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^3. - Lucian Craciun, Feb 09 2017
The asymptotic density of this sequence is 0.000031511777... (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*154836,154836) is divisible by 154836^3.
		

Crossrefs

Programs

  • Maple
    A282163 := proc (n, m) local a, cbc, k; a := {}; cbc := binomial(2*n, n); for k from n+1 to m do cbc := cbc*(4-2/k); if type(cbc/k^3, integer) then a := `union`(a, {k}) end if end do; a end proc; A282163(0, 10^6)
  • Mathematica
    Select[Table[n, {n, 10^6}], IntegerQ[Binomial[2#, #]/#^3] &] (* for small n *)
    n := 0; m := 10^6; A282163 := {}; cbc := Binomial[2n, n]; For[k := n+1, k <= m, k++, {cbc *= 4-2/k, If[IntegerQ[cbc/k^3], A282163 = Append[A282163, k]]}] (* for large m *)
    A282163:={}; k:=3; For[n:=1, n<=10^6, n++, {f=FactorInteger[n], For[j:=1, j<=Length[f], j++, {b=True, If[Sum[Floor[2n/f[[j, 1]]^i]-2 Floor[n/f[[j, 1]]^i], {i, 1, Length[IntegerDigits[2n, f[[j, 1]]]]}]A282163=Append[A282163, n]]}] (* Legendre's formula for drastic time reduction, Lucian Craciun, Feb 28 2017; optimized by Lucian Craciun, Mar 02 2017 *)