cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A282582 Number of compositions (ordered partitions) of n into tetrahedral (or triangular pyramidal) numbers (A000292).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 314, 444, 625, 878, 1233, 1736, 2445, 3441, 4838, 6804, 9573, 13473, 18957, 26668, 37514, 52780, 74264, 104488, 147000, 206808, 290961, 409369, 575955, 810314, 1140029, 1603924, 2256603, 3174867, 4466763, 6284339, 8841533, 12439323
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2017

Keywords

Examples

			a(8) = 7 because we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (k + 2)/6), {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=1, 50, x^(k*(k + 1)*(k + 2)/6)) + O(x^51))) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(k+2)/6)).

A341796 Number of ways to write n as an ordered sum of 5 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 5, 0, 0, 10, 0, 0, 15, 0, 0, 25, 0, 0, 31, 0, 0, 30, 5, 0, 35, 20, 0, 30, 30, 0, 20, 40, 0, 20, 65, 0, 10, 65, 0, 5, 70, 10, 5, 90, 30, 0, 70, 30, 1, 85, 40, 0, 80, 60, 0, 50, 50, 0, 70, 90, 10, 50, 90, 20, 50, 80, 10, 60, 130, 20, 65, 70, 20, 65, 90, 30, 50, 110, 70, 65, 100
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100);
    Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..20]])^5 )); // G. C. Greubel, Jul 20 2022
    
  • Mathematica
    nmax = 82; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
  • SageMath
    def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..20) ) )^m
    def A341796_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(5, x) ).list()
    a=A341796_list(120); a[5:100] # G. C. Greubel, Jul 20 2022

Formula

G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^5.

A290429 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 0, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 0, 1, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 3, 2, 0, 0, 1, 12, 55, 120, 135, 112, 112, 60, 15, 12, 3, 2, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k tetrahedral (or triangular pyramidal) numbers (A000292).

Examples

			Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0,  0,  1,  3,   6,  10,  ...
0,  0,  0,  1,   4,  10,  ...
0,  1,  2,  3,   5,  10,  ...
0,  0,  2,  6,  12,  21,  ...
		

Crossrefs

Cf. A000007 (column 0), A023533 (column 1), A282172 (column 5).
Main diagonal gives A303170.
Similar to, but different from, A045847.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (i + 2)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

A282349 Expansion of (Sum_{k>=0} x^(k*(2*k^2+1)/3))^7.

Original entry on oeis.org

1, 7, 21, 35, 35, 21, 14, 43, 105, 140, 105, 42, 28, 105, 210, 210, 105, 21, 35, 147, 252, 245, 175, 105, 77, 154, 315, 455, 420, 210, 63, 147, 441, 630, 420, 105, 7, 147, 441, 525, 350, 210, 106, 126, 322, 567, 735, 560, 210, 84, 301, 840, 1050, 630, 210, 49, 315, 875, 980, 630, 245, 35, 245, 707, 1050, 980, 560, 210, 168
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 12 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 7 octahedral numbers (A005900).
Pollock (1850) conjectured that every number is the sum of at most 7 octahedral numbers (a(n) > 0 for all n >= 0).

Examples

			a(6) = 14 because we have:
[6, 0, 0, 0, 0, 0, 0]
[0, 6, 0, 0, 0, 0, 0]
[0, 0, 6, 0, 0, 0, 0]
[0, 0, 0, 6, 0, 0, 0]
[0, 0, 0, 0, 6, 0, 0]
[0, 0, 0, 0, 0, 6, 0]
[0, 0, 0, 0, 0, 0, 6]
[1, 1, 1, 1, 1, 1, 0]
[1, 1, 1, 1, 1, 0, 1]
[1, 1, 1, 1, 0, 1, 1]
[1, 1, 1, 0, 1, 1, 1]
[1, 1, 0, 1, 1, 1, 1]
[1, 0, 1, 1, 1, 1, 1]
[0, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Programs

  • Mathematica
    nmax = 68; CoefficientList[Series[Sum[x^(k (2 k^2 + 1)/3), {k, 0, nmax}]^7, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k*(2*k^2+1)/3))^7.

A282350 Expansion of (Sum_{k>=0} x^(k*(5*k^2-5*k+2)/2))^15.

Original entry on oeis.org

1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 470, 315, 1380, 5461, 15015, 30030, 45045, 51480, 45045, 30030, 15015, 5460, 1470, 1575, 8205, 30030, 75075, 135135, 180180, 180180, 135135, 75075, 30030, 8190, 1820, 5565, 30030, 100100, 225225, 360360, 420420, 360360, 225225, 100100, 30030, 5460
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 12 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 15 icosahedral numbers (A006564).
Pollock conjectured that every number is the sum of at most 5 tetrahedral numbers and that every number is the sum of at most 7 octahedral numbers.
Conjecture: a(n) > 0 for all n >= 0.
Extended conjecture: every number is the sum of at most 15 icosahedral numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[x^(k (5 k^2 - 5 k + 2)/2), {k, 0, nmax}]^15, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k*(5*k^2-5*k+2)/2))^15.
Showing 1-5 of 5 results.