A282197 a(n) is the smallest number d if the point (d,d) is shared by exactly n different Dyck paths in the main diagonal of the diagram of the symmetries of sigma described in A237593.
1, 2, 7, 15, 52, 102, 296, 371, 455, 929, 1853, 2034, 4517, 4797, 5829, 6146, 6948, 17577, 19818, 18915, 60349, 78369, 113010, 110185, 91650, 85171, 311321, 123788, 823049, 128596, 1650408, 1136865, 415355, 906771, 2897535
Offset: 1
Examples
The four examples listed in A279286 are also examples for this sequences. a(20) = 18915 is in the sequence since it is the first time that exactly 20 Dyck paths meet on the diagonal though a concurrence of exactly 19 paths on the diagonal happens only later at a(19) = 19818.
Programs
-
Mathematica
a240542[n_] := Sum[(-1)^(k+1)*Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}] (* parameter cL must be sufficiently large for bound b *) a282197[cL_, b_] := Module[{centers=Map[0&, Range[cL]], acc={1}, k=2, cPrev=1, cCur, len}, While[k<=b, cCur=a240542[k]; If[Last[acc]==cCur, AppendTo[acc,cCur], len=Length[acc]; If[centers[[len]]==0, centers[[len]]=cPrev]; acc={cCur}; cPrev=cCur]; k++]; centers] a282197[50, 5000000] (* data *) (* list processing implementation useful for "small" arguments only *) a282197F[n_] := Map[Last, Sort[Normal[Map[First[First[#]]&, GroupBy[Split[Map[a240542, Range[n]]], Length[#]&]]]]] a282197F[50000] (* computes a(1) .. a(20) *)
Comments