A282248 Expansion of (Sum_{k>=0} x^(k*(5*k-3)/2))^7.
1, 7, 21, 35, 35, 21, 7, 8, 42, 105, 140, 105, 42, 7, 21, 105, 210, 210, 112, 63, 105, 175, 245, 252, 147, 77, 210, 420, 455, 315, 147, 35, 105, 420, 637, 483, 273, 266, 315, 392, 532, 483, 357, 532, 840, 840, 567, 315, 210, 421, 840, 1050, 777, 462, 497, 707, 882, 917, 735, 525, 889, 1407, 1407, 1050, 770, 525, 630, 1302
Offset: 0
Keywords
Examples
a(7) = 8 because we have [7, 0, 0, 0, 0, 0, 0] [0, 7, 0, 0, 0, 0, 0] [0, 0, 7, 0, 0, 0, 0] [0, 0, 0, 7, 0, 0, 0] [0, 0, 0, 0, 7, 0, 0] [0, 0, 0, 0, 0, 7, 0] [0, 0, 0, 0, 0, 0, 7] [1, 1, 1, 1, 1, 1, 1]
Links
- Ilya Gutkovskiy, Extended graphical example
- Eric Weisstein's World of Mathematics, Heptagonal Number
- Index to sequences related to polygonal numbers
Programs
-
Mathematica
nmax = 67; CoefficientList[Series[Sum[x^(k (5 k - 3)/2), {k, 0, nmax}]^7, {x, 0, nmax}], x]
Formula
G.f.: (Sum_{k>=0} x^(k*(5*k-3)/2))^7.
Comments